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Series Foreword

The first book in the new series on Adaptive Computation and Machine Learn-
ing, Pierre Baldi and Søren Brunak’s Bioinformatics provides a comprehensive
introduction to the application of machine learning in bioinformatics. The
development of techniques for sequencing entire genomes is providing astro-
nomical amounts of DNA and protein sequence data that have the potential
to revolutionize biology. To analyze this data, new computational tools are
needed—tools that apply machine learning algorithms to fit complex stochas-
tic models. Baldi and Brunak provide a clear and unified treatment of statisti-
cal and neural network models for biological sequence data. Students and re-
searchers in the fields of biology and computer science will find this a valuable
and accessible introduction to these powerful new computational techniques.

The goal of building systems that can adapt to their environments and
learn from their experience has attracted researchers from many fields, in-
cluding computer science, engineering, mathematics, physics, neuroscience,
and cognitive science. Out of this research has come a wide variety of learning
techniques that have the potential to transform many scientific and industrial
fields. Recently, several research communities have begun to converge on a
common set of issues surrounding supervised, unsupervised, and reinforce-
ment learning problems. The MIT Press series on Adaptive Computation and
Machine Learning seeks to unify the many diverse strands of machine learning
research and to foster high quality research and innovative applications.

Thomas Dietterich
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Preface

We have been very pleased, beyond our expectations, with the reception of
the first edition of this book. Bioinformatics, however, continues to evolve
very rapidly, hence the need for a new edition. In the past three years, full-
genome sequencing has blossomed with the completion of the sequence of
the fly and the first draft of the Human Genome Project. In addition, several
other high-throughput/combinatorial technologies, such as DNA microarrays
and mass spectrometry, have considerably progressed. Altogether, these high-
throughput technologies are capable of rapidly producing terabytes of data
that are too overwhelming for conventional biological approaches. As a re-
sult, the need for computer/statistical/machine learning techniques is today
stronger rather than weaker.

Bioinformatics in the Post-genome Era

In all areas of biological and medical research, the role of the computer has
been dramatically enhanced in the last five to ten year period. While the first
wave of computational analysis did focus on sequence analysis, where many
highly important unsolved problems still remain, the current and future needs
will in particular concern sophisticated integration of extremely diverse sets
of data. These novel types of data originate from a variety of experimental
techniques of which many are capable of data production at the levels of entire
cells, organs, organisms, or even populations.

The main driving force behind the changes has been the advent of new, effi-
cient experimental techniques, primarily DNA sequencing, that have led to an
exponential growth of linear descriptions of protein, DNA and RNA molecules.
Other new data producing techniques work as massively parallel versions of
traditional experimental methodologies. Genome-wide gene expression mea-
surements using DNA microrarrays is, in essence, a realization of tens of thou-
sands of Northern blots. As a result, computational support in experiment de-
sign, processing of results and interpretation of results has become essential.

xi



xii Preface

These developments have greatly widened the scope of bioinformatics.
As genome and other sequencing projects continue to advance unabated,

the emphasis progressively switches from the accumulation of data to its in-
terpretation. Our ability in the future to make new biological discoveries will
depend strongly on our ability to combine and correlate diverse data sets along
multiple dimensions and scales, rather than a continued effort focused in tra-
ditional areas. Sequence data will have to be integrated with structure and
function data, with gene expression data, with pathways data, with phenotypic
and clinical data, and so forth. Basic research within bioinformatics will have
to deal with these issues of system and integrative biology, in the situation
where the amount of data is growing exponentially.

The large amounts of data create a critical need for theoretical, algorithmic,
and software advances in storing, retrieving, networking, processing, analyz-
ing, navigating, and visualizing biological information. In turn, biological sys-
tems have inspired computer science advances with new concepts, including
genetic algorithms, artificial neural networks, computer viruses and synthetic
immune systems, DNA computing, artificial life, and hybrid VLSI-DNA gene
chips. This cross-fertilization has enriched both fields and will continue to do
so in the coming decades. In fact, all the boundaries between carbon-based
and silicon-based information processing systems, whether conceptual or ma-
terial, have begun to shrink [29].

Computational tools for classifying sequences, detecting weak similarities,
separating protein coding regions from non-coding regions in DNA sequences,
predicting molecular structure, post-translational modification and function,
and reconstructing the underlying evolutionary history have become an essen-
tial component of the research process. This is essential to our understanding
of life and evolution, as well as to the discovery of new drugs and therapies.
Bioinformatics has emerged as a strategic discipline at the frontier between
biology and computer science, impacting medicine, biotechnology, and society
in many ways.

Large databases of biological information create both challenging data-
mining problems and opportunities, each requiring new ideas. In this regard,
conventional computer science algorithms have been useful, but are increas-
ingly unable to address many of the most interesting sequence analysis prob-
lems. This is due to the inherent complexity of biological systems, brought
about by evolutionary tinkering, and to our lack of a comprehensive theory
of life’s organization at the molecular level. Machine-learning approaches (e.g.
neural networks, hidden Markov models, vector support machines, belief net-
works), on the other hand, are ideally suited for domains characterized by
the presence of large amounts of data, “noisy” patterns, and the absence of
general theories. The fundamental idea behind these approaches is to learn
the theory automatically from the data, through a process of inference, model



Preface xiii

fitting, or learning from examples. Thus they form a viable complementary
approach to conventional methods. The aim of this book is to present a broad
overview of bioinformatics from a machine-learning perspective.

Machine-learning methods are computationally intensive and benefit
greatly from progress in computer speed. It is remarkable that both computer
speed and sequence volume have been growing at roughly the same rate
since the late 1980s, doubling every 16 months or so. More recently, with the
completion of the first draft of the Human Genome Project and the advent of
high-throughput technologies such as DNA microarrays, biological data has
been growing even faster, doubling about every 6 to 8 months, and further in-
creasing the pressure towards bioinformatics. To the novice, machine-learning
methods may appear as a bag of unrelated techniques—but they are not. On
the theoretical side, a unifying framework for all machine-learning methods
also has emerged since the late 1980s. This is the Bayesian probabilistic
framework for modeling and inference. In our minds, in fact, there is little
difference between machine learning and Bayesian modeling and inference, ex-
cept for the emphasis on computers and number crunching implicit in the first
term. It is the confluence of all three factors—data, computers, and theoretical
probabilistic framework—that is fueling the machine-learning expansion, in
bioinformatics and elsewhere. And it is fair to say that bioinformatics and
machine learning methods have started to have a significant impact in biology
and medicine.

Even for those who are not very sensitive to mathematical rigor, modeling
biological data probabilistically makes eminent sense. One reason is that bio-
logical measurements are often inherently "noisy", as is the case today of DNA
microarray or mass spectrometer data. Sequence data, on the other hand,
is becoming noise free due to its discrete nature and the cost-effectiveness
of repeated sequencing. Thus measurement noise cannot be the sole reason
for modeling biological data probabilistically. The real need for modeling bi-
ological data probabilistically comes from the complexity and variability of
biological systems brought about by eons of evolutionary tinkering in com-
plex environments. As a result, biological systems have inherently a very high
dimensionality. Even in microarray experiments where expression levels of
thousands of genes are measured simultaneously, only a small subset of the
relevant variables is being observed. The majority of the variables remain “hid-
den” and must be factored out through probabilistic modeling. Going directly
to a systematic probabilistic framework may contribute to the acceleration of
the discovery process by avoiding some of the pitfalls observed in the history
of sequence analysis, where it took several decades for probabilistic models to
emerge as the proper framework.

An often-met criticism of machine-learning techniques is that they are
“black box” approaches: one cannot always pin down exactly how a complex
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neural network, or hidden Markov model, reaches a particular answer. We
have tried to address such legitimate concerns both within the general proba-
bilistic framework and from a practical standpoint. It is important to realize,
however, that many other techniques in contemporary molecular biology
are used on a purely empirical basis. The polymerase chain reaction, for
example, for all its usefulness and sensitivity, is still somewhat of a black box
technique. Many of its adjustable parameters are chosen on a trial-and-error
basis. The movement and mobility of sequences through matrices in gels is
another area where the pragmatic success and usefulness are attracting more
attention than the lack of detailed understanding of the underlying physical
phenomena. Also, the molecular basis for the pharmacological effect of most
drugs remains largely unknown. Ultimately the proof is in the pudding. We
have striven to show that machine-learning methods yield good puddings and
are being elegant at the same time.

Audience and Prerequisites

The book is aimed at both students and more advanced researchers, with di-
verse backgrounds. We have tried to provide a succinct description of the
main biological concepts and problems for the readers with a stronger back-
ground in mathematics, statistics, and computer science. Likewise, the book is
tailored to the biologists and biochemists who will often know more about the
biological problems than the text explains, but need some help to understand
the new data-driven algorithms, in the context of biological data. It should
in principle provide enough insights while remaining sufficiently simple for
the reader to be able to implement the algorithms described, or adapt them
to a particular problem. The book, however, does not cover the informatics
needed for the management of large databases and sequencing projects, or
the processing of raw fluorescence data. The technical prerequisites for the
book are basic calculus, algebra, and discrete probability theory, at the level of
an undergraduate course. Any prior knowledge of DNA, RNA, and proteins is
of course helpful, but not required.

Content and General Outline of the Book

We have tried to write a comprehensive but reasonably concise introductory
book that is self-contained. The book includes definitions of main concepts
and proofs of main theorems, at least in sketched form. Additional technical
details can be found in the appendices and the references. A significant por-
tion of the book is built on material taken from articles we have written over
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the years, as well as from tutorials given at several conferences, including the
ISMB (Intelligent Systems for Molecular Biology) conferences, courses given at
the Technical University of Denmark and UC Irvine, and workshops organized
during the NIPS (Neural Information Processing Systems) conference. In par-
ticular, the general Bayesian probabilistic framework that is at the core of the
book has been presented in several ISMB tutorials starting in 1994.

The main focus of the book is on methods, not on the history of a rapidly
evolving field. While we have tried to quote the relevant literature in detail,
we have concentrated our main effort on presenting a number of techniques,
and perhaps a general way of thinking that we hope will prove useful. We have
tried to illustrate each method with a number of results, often but not always
drawn from our own practice.

Chapter 1 provides an introduction to sequence data in the context of
molecular biology, and to sequence analysis. It contains in particular an
overview of genomes and proteomes, the DNA and protein “universes” created
by evolution that are becoming available in the public databases. It presents
an overview of genomes and their sizes, and other comparative material that,
if not original, is hard to find in other textbooks.

Chapter 2 is the most important theoretical chapter, since it lays the foun-
dations for all machine-learning techniques, and shows explicitly how one
must reason in the presence of uncertainty. It describes a general way of think-
ing about sequence problems: the Bayesian statistical framework for inference
and induction. The main conclusion derived from this framework is that the
proper language for machine learning, and for addressing all modeling prob-
lems, is the language of probability theory. All models must be probabilistic.
And probability theory is all one needs for a scientific discourse on models
and on their relationship to the data. This uniqueness is reflected in the title
of the book. The chapter briefly covers classical topics such as priors, like-
lihood, Bayes theorem, parameter estimation, and model comparison. In the
Bayesian framework, one is mostly interested in probability distributions over
high-dimensional spaces associated, for example, with data, hidden variables,
and model parameters. In order to handle or approximate such probability
distributions, it is useful to exploit independence assumptions as much as
possible, in order to achieve simpler factorizations. This is at the root of
the notion of graphical models, where variable dependencies are associated
with graph connectivity. Useful tractable models are associated with relatively
sparse graphs. Graphical models and a few other techniques for handling
high-dimensional distributions are briefly introduced in Chapter 2 and further
elaborated in Appendix C. The inevitable use of probability theory and (sparse)
graphical models are really the two central ideas behind all the methods.

Chapter 3 is a warm-up chapter, to illustrate the general Bayesian proba-
bilistic framework. It develops a few classical examples in some detail which
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are used in the following chapters. It can be skipped by anyone familiar with
such examples, or during a first quick reading of the book. All the exam-
ples are based on the idea of generating sequences by tossings one or several
dices. While such a dice model is extremely simplistic, it is fair to say that a
substantial portion of this book, Chapters 7–12, can be viewed as various gen-
eralizations of the dice model. Statistical mechanics is also presented as an
elegant application of the dice model within the Bayesian framework. In addi-
tion, statistical mechanics offers many insights into different areas of machine
learning. It is used in particular in Chapter 4 in connection with a number
of algorithms, such as Monte Carlo and EM (expectation maximization) algo-
rithms.

Chapter 4 contains a brief treatment of many of the basic algorithms re-
quired for Bayesian inference, machine learning, and sequence applications, in
order to compute expectations and optimize cost functions. These include var-
ious forms of dynamic programming, gradient-descent and EM algorithms, as
well as a number of stochastic algorithms, such as Markov chain Monte Carlo
(MCMC) algorithms. Well-known examples of MCMC algorithms are described,
such as Gibbs sampling, the Metropolis algorithm, and simulated annealing.
This chapter can be skipped in a first reading, especially if the reader has a
good acquaintance with algorithms and/or is not interested in implementing
such algorithms.

Chapters 5–9 and Chapter 12 form the core of the book. Chapter 5 provides
an introduction to the theory of neural networks. It contains definitions of the
basic concepts, a short derivation of the “backpropagation” learning algorithm,
as well as a simple proof of the fact that neural networks are universal approxi-
mators. More important, perhaps, it describes how neural networks, which are
often introduced without any reference to probability theory, are in fact best
viewed within the general probabilistic framework of Chapter 2. This in turn
yields useful insights on the design of neural architectures and the choice of
cost functions for learning.

Chapter 6 contains a selected list of applications of neural network tech-
niques to sequence analysis problems. We do not attempt to cover the hun-
dreds of applications produced so far, but have selected seminal examples
where advances in the methodology have provided significant improvements
over other approaches. We especially treat the issue of optimizing training
procedures in the sequence context, and how to combine networks to form
more complex and powerful algorithms. The applications treated in detail
include protein secondary structure, signal peptides, intron splice sites, and
gene-finding.

Chapters 7 and 8, on hidden Markov models, mirror Chapters 5 and 6.
Chapter 7 contains a fairly detailed introduction to hidden Markov models
(HMMs), and the corresponding dynamic programming algorithms (forward,
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backward, and Viterbi algorithms) as well as learning algorithms (EM, gradient-
descent, etc.). Hidden Markov models of biological sequences can be viewed
as generalized dice models with insertions and deletions.

Chapter 8 contains a selected list of applications of hidden Markov models
to both protein and DNA/RNA problems. It demonstrates, first, how HMMs
can be used, among other things, to model protein families, derive large multi-
ple alignments, classify sequences, and search large databases of complete or
fragment sequences. In the case of DNA, we show how HMMs can be used in
gene-finding (promoters, exons, introns) and gene-parsing tasks.

HMMs can be very effective, but they have their limitations. Chapters 9–11
can be viewed as extensions of HMMs in different directions. Chapter 9 uses
the theory of probabilistic graphical models systematically both as a unify-
ing concept and to derive new classes of models, such as hybrid models that
combine HMMs with artificial neural networks, or bidirectional Markov models
that exploit the spatial rather than temporal nature of biological sequences.
The chapter includes applications to gene-finding, analysis of DNA symme-
tries, and prediction of protein secondary structure.

Chapter 10 presents phylogenetic trees and, consistent with the framework
of Chapter 2, the inevitable underlying probabilistic models of evolution. The
models discussed in this chapter and throughout the book can be viewed as
generalizations of the simple dice models of Chapter 3. In particular, we show
how tree reconstruction methods that are often presented in a nonprobabilis-
tic context (i.e., parsimony methods) are in fact a special case of the general
framework as soon as the underlying probabilistic model they approximate is
made explicit.

Chapter 11 covers formal grammars and the Chomsky hierarchy. Stochas-
tic grammars provide a new class of models for biological sequences, which
generalize both HMMs and the simple dice model. Stochastic regular gram-
mars are in fact equivalent to HMMs. Stochastic context-free grammars are
more powerful and roughly correspond to dice that can produce pairs of let-
ters rather than single letters. Applications of stochastic grammars, especially
to RNA modeling, are briefly reviewed.

Chapter 12 focuses primarily on the analysis of DNA microarray gene ex-
pression data, once again by generalizing the die model. We show how the
Bayesian probabilistic framework can be applied systematically to array data.
In particular, we treat the problems of establishing whether a gene behaves
differently in a treatment versus control situation and of gene clustering. Anal-
ysis of regulatory regions and inference of gene regulatory networks are dis-
cussed briefly.

Chapter 13 contains an overview of current database resources and other
information that is publicly available over the Internet, together with a list
of useful directions to interesting WWW sites and pointers. Because these
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resources are changing rapidly, we focus on general sites where information is
likely to be updated regularly. However, the chapter contains also a pointer to
a page that contains regularly-updated links to all the other sites.

The book contains in appendix form a few technical sections that are im-
portant for reference and for a thorough understanding of the material. Ap-
pendix A covers statistical notions such as errors bars, sufficient statistics, and
the exponential family of distributions. Appendix B focuses on information
theory and the fundamental notions of entropy, mutual information, and rela-
tive entropy. Appendix C provides a brief overview of graphical models, inde-
pendence, and Markov properties, in both the undirected case (random Markov
fields) and the directed case (Bayesian networks). Appendix D covers technical
issues related to hidden Markov models, such as scaling, loop architectures,
and bendability. Finally, appendix E briefly reviews two related classes of ma-
chine learning models of growing importance, Gaussian processes and sup-
port vector machines. A number of exercises are also scattered throughout
the book: from simple proofs left to the reader to suggestions for possible
extensions.

For ease of exposition, standard assumptions of positivity or differentiabil-
ity are sometimes used implicitly, but should be clear from the context.

What Is New and What Is Omitted

On several occasions, we present new unpublished material or old material but
from a somewhat new perspective. Examples include the discussion around
MaxEnt and the derivation of the Boltzmann–Gibbs distribution in Chapter 3,
the application of HMMs to fragments, to promoters, to hydropathy profiles,
and to bendability profiles in Chapter 8, the analysis of parsimony methods in
probabilistic terms, the higher-order evolutionary models in Chapter 10, and
the Bayesian analysis of gene differences in microarray data. The presentation
we give of the EM algorithm in terms of free energy is not widely known and,
to the best of our knowledge, was first described by Neal and Hinton in an
unpublished technical report.

In this second edition we have benefited from and incorporated the feed-
back received from many colleagues, students, and readers. In addition to re-
visions and updates scattered throughout the book to reflect the fast pace of
discovery set up by complete genome sequencing and other high-throughput
technologies, we have included a few more substantial changes.

These include:

• New section on the human genome sequence in Chapter 1.

• New sections on protein function and alternative splicing in Chapter 1.
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• New neural network applications in Chapter 6.

• A completely revised Chapter 9, which now focuses systematically on
graphical models and their applications to bioinformatics. In particular,
this chapter contains entirely new section about gene finding, and the
use of recurrent neural networks for the prediction of protein secondary
structure.

• A new chapter (Chapter 12) on DNA microarray data and gene expression.

• A new appendix (Appendix E) on support vector machines and Gaussian
processes.

The book material and treatment reflect our personal biases. Many relevant
topics had to be omitted in order to stay within reasonable size limits. At
the theoretical level, we would have liked to be able to go more into higher
levels of Bayesian inference and Bayesian networks. Most of the book in fact
could have been written using Bayesian networks only, providing an even more
unified treatment, at some additional abstraction cost. At the biological level,
our treatment of phylogenetic trees, for example, could easily be expanded
and the same can be said of the section on DNA microarrays and clustering
(Chapter 12). In any case, we have tried to provide ample references where
complementary information can be found.

Vocabulary and Notation

Terms such as “bioinformatics,” “computational biology,” “computational
molecular biology,” and “biomolecular informatics” are used to denote the
field of interest of this book. We have chosen to be flexible and use all those
terms essentially in an interchangeable way, although one should not forget
that the first two terms are extremely broad and could encompass entire areas
not directly related to this book, such as the application of computers to
model the immune system, or the brain. More recently, the term “computa-
tional molecular biology” has also been used in a completely different sense,
similar to “DNA computing,” to describe attempts to build computing devices
out of biomolecules rather than silicon. The adjective “artificial” is also im-
plied whenever we use the term “neural network” throughout the book. We
deal with artificial neural networks from an algorithmic-pattern-recognition
point of view only.

And finally, a few words on notation. Most of the symbols used are listed at
the end of the book. In general, we do not systematically distinguish between
scalars, vectors, and matrices. A symbol such as “D” represents the data, re-
gardless of the amount or complexity. Whenever necessary, vectors should be
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regarded as column vectors. Boldface letters are usually reserved for proba-
bilistic concepts, such as probability (P), expectation (E), and variance (Var). If
X is a random variable, we write P(x) for P(X = x), or sometimes just P(X) if
no confusion is possible. Actual distributions are denoted by P,Q,R, and so
on.

We deal mostly with discrete probabilities, although it should be clear how
to extend the ideas to the continuous case whenever necessary. Calligraphic
style is reserved for particular functions, such as the energy (E) and the en-
tropy (H ). Finally, we must often deal with quantities characterized by many
indices. A connection weight in a neural network may depend on the units, i
and j, it connects; its layer, l; the time, t, during the iteration of a learning al-
gorithm; and so on. Within a given context, only the most relevant indices are
indicated. On rare occasions, and only when confusion is extremely unlikely,
the same symbol is used with two different meanings (for instance, D denotes
also the set of delete states of an HMM).
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Chapter 1

Introduction

1.1 Biological Data in Digital Symbol Sequences

A fundamental feature of chain molecules, which are responsible for the func-
tion and evolution of living organisms, is that they can be cast in the form
of digital symbol sequences. The nucleotide and amino acid monomers in
DNA, RNA, and proteins are distinct, and although they are often chemically
modified in physiological environments, the chain constituents can without
infringement be represented by a set of symbols from a short alphabet. There-
fore experimentally determined biological sequences can in principle be ob-
tained with complete certainty. At a particular position in a given copy of
a sequence we will find a distinct monomer, or letter, and not a mixture of
several possibilities.

The digital nature of genetic data makes them quite different from many
other types of scientific data, where the fundamental laws of physics or the so-
phistication of experimental techniques set lower limits for the uncertainty. In
contrast, provided the economic and other resources are present, nucleotide
sequences in genomic DNA, and the associated amino acid sequences in pro-
teins, can be revealed completely. However, in genome projects carrying out
large-scale DNA sequencing or in direct protein sequencing, a balance among
purpose, relevance, location, ethics, and economy will set the standard for the
quality of the data.

The digital nature of biological sequence data has a profound impact on
the types of algorithms that have been developed and applied for computa-
tional analysis. While the goal often is to study a particular sequence and its
molecular structure and function, the analysis typically proceeds through the
study of an ensemble of sequences consisting of its different versions in dif-
ferent species, or even, in the case of polymorphisms, different versions in
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the same species. Competent comparison of sequence patterns across species
must take into account that biological sequences are inherently “noisy,” the
variability resulting in part from random events amplified by evolution. Be-
cause DNA or amino acid sequences with a given function or structure will
differ (and be uncertain), sequence models must be probabilistic.

1.1.1 Database Annotation Quality

It is somehow illogical that although sequence data can be determined exper-
imentally with high precision, they are generally not available to researchers
without additional noise stemming from the joint effects of incorrect interpre-
tation of experiments and incorrect handling and storage in public databases.
Given that biological sequences are stored electronically, that the public
databases are curated by a highly diverse group of people, and, moreover,
that the data are annotated and submitted by an even more diverse group of
biologists and bioinformaticians, it is perhaps understandable that in many
cases the error rate arising from the subsequent handling of information may
be much larger than the initial experimental error [100, 101, 327].

An important factor contributing to this situation is the way in which data
are stored in the large sequence databases. Features in biological sequences
are normally indicated by listing the relevant positions in numeric form, and
not by the “content” of the sequence. In the human brain, which is renowned
for its ability to handle vast amounts of information accumulated over the life-
time of the individual, information is recalled by content-addressable schemes
by which a small part of a memory item can be used to retrieve its complete
content. A song, for example, can often be recalled by its first two lines.

Present-day computers are designed to handle numbers—in many coun-
tries human “accession” numbers, in the form of Social Security numbers, for
one thing, did not exist before them [103]. Computers do not like content-
addressable procedures for annotating and retrieving information. In com-
puter search passport attributes of people—their names, professions, and hair
color—cannot always be used to single out a perfect match, and if at all most
often only when formulated using correct language and perfect spelling.

Biological sequence retrieval algorithms can been seen as attempts to con-
struct associative approaches for finding specific sequences according to an
often “fuzzy” representation of their content. This is very different from the
retrieval of sequences according to their functionality. When the experimen-
talist submits functionally relevant information, this information is typically
converted from what in the laboratory is kept as marks, coloring, or scribbles
on the sequence itself. This “semiotic” representation by content is then con-
verted into a representation where integers indicate individual positions. The
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numeric representation is subsequently impossible to review by human visual
inspection.

In sequence databases, the result is that numerical feature table errors,
instead of being acceptable noise on the retrieval key, normally will produce
garbage in the form of more or less random mappings between sequence posi-
tions and the annotated structural or functional features. Commonly encoun-
tered errors are wrong or meaningless annotation of coding and noncoding re-
gions in genomic DNA and, in the case of amino acid sequences, randomly dis-
placed functional sites and posttranslational modifications. It may not be easy
to invent the perfect annotation and data storage principle for this purpose.
In the present situation it is important that the bioinformatician carefully take
into account these potential sources of error when creating machine-learning
approaches for prediction and classification.

In many sequence-driven mechanisms, certain nucleotides or amino acids
are compulsory. Prior knowledge of this kind is an easy and very useful way
of catching typographical errors in the data. It is interesting that machine-
learning techniques provide an alternative and also very powerful way of de-
tecting erroneous information and annotation. In a body of data, if something
is notoriously hard to learn, it is likely that it represents either a highly atypical
case or simply a wrong assignment. In both cases, it is nice to be able to sift out
examples that deviate from the general picture. Machine-learning techniques
have been used in this way to detect wrong intron splice sites in eukaryotic
genes [100, 97, 101, 98, 327], wrong or missing assignments of O-linked glyco-
sylation sites in mammalian proteins [235], or wrongly assigned cleavage sites
in polyproteins from picornaviruses [75], to mention a few cases. Importantly,
not all of the errors stem from data handling, such as incorrect transfer of
information from published papers into database entries: significant number
of errors stems from incorrect assignments made by experimentalists [327].
Many of these errors could also be detected by simple consistency checks prior
to incorporation in a public database.

A general problem in the annotation of the public databases is the fuzzy
statements in the entries regarding who originally produced the feature an-
notation they contain. The evidence may be experimental, or assigned on the
basis of sequence similarity or by a prediction algorithm. Often ambiguities
are indicated in a hard-to-parse manner in free text, using question marks or
comments such as POTENTIAL or PROBABLE. In order not to produce circular
evaluation of the prediction performance of particular algorithms, it is neces-
sary to prepare the data carefully and to discard data from unclear sources.
Without proper treatment, this problem is likely to increase in the future, be-
cause more prediction schemes will be available. One of the reasons for the
success of machine-learning techniques within this imperfect data domain is
that the methods often—in analogy to their biological counterparts—are able
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to handle noise, provided large corpora of sequences are available. New dis-
coveries within the related area of natural language acquisition have proven
that even eight-month-old infants can detect linguistic regularities and learn
simple statistics for the recognition of word boundaries in continuous speech
[458]. Since the language the infant has to learn is as unknown and complex
as the DNA sequences seem to us, it is perhaps not surprising that learning
techniques can be useful for revealing similar regularities in genomic data.

1.1.2 Database Redundancy

Another recurrent problem haunting the analysis of protein and DNA se-
quences is the redundancy of the data. Many entries in protein or genomic
databases represent members of protein and gene families, or versions of
homologous genes found in different organisms. Several groups may have
submitted the same sequence, and entries can therefore be more or less
closely related, if not identical. In the best case, the annotation of these very
similar sequences will indeed be close to identical, but significant differences
may reflect genuine organism or tissue specific variation.

In sequencing projects redundancy is typically generated by the different
experimental approaches themselves. A particular piece of DNA may for ex-
ample be sequenced in genomic form as well as in the form of cDNA comple-
mentary to the transcribed RNA present in the cell. As the sequence being
deposited in the databases is determined by widely different approaches—
ranging from noisy single-pass sequence to finished sequence based on five-
to tenfold repetition—the same gene may be represented by many database
entries displaying some degree of variation.

In a large number of eukaryotes, the cDNA sequences (complete or incom-
plete) represent the spliced form of the pre-mRNA, and this means again, for
genes undergoing alternative splicing, that a given piece of genomic DNA in
general will be associated with several cDNA sequences being noncontinuous
with the chromosomal sequence [501]. Alternative splice forms can be gener-
ated in many different ways. Figure 1.1 illustrates some of the different ways
coding and noncoding segments may be joined, skipped, and replaced during
splicing. Organisms having a splice machinery at their disposal seem to use
alternative splicing quite differently. The alternative to alternative splicing is
obviously to include different versions of the same gene as individual genes in
the genome. This may be the strategy used by the nematode Caenorhabditis
elegans, which seems to contain a large number of genes that are very similar,
again giving rise to redundancy when converted into data sets [315]. In the
case of the human genome [234, 516, 142] it is not unlikely that at least 30-
80% of the genes are alternatively spliced, in fact it may be the rule rather than
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Figure 1.1: The Most Common Modes of Alternative Splicing in Eukaryotes. Left from top:
Cassette exon (exon skipping or inclusion), alternative 5’ splice site, alternative 3’ splice site.
Right from top: whole intron retention, pairwise spliced exons and mutually exclusive exons.
These different types of alternative pre-mRNA processing can be combined [332].

the exception.
Data redundancy may also play a nontrivial role in relation to massively

parallel gene expression experiments, a topic we return to in chapter 12. The
sequence of genes either being spotted onto glass plates, or synthesized on
DNA chips, is typically based on sequences, or clusters of sequences, deposited
in the databases. In this way microarrays or chips may end up containing more
sequences than there are genes in the genome of a particular organism, thus
giving rise to noise in the quantitative levels of hybridization recorded from
the experiments.

In protein databases a given gene may also be represented by amino acid
sequences that do not correspond to a direct translation of the genomic wild-
type sequence of nucleotides. It is not uncommon that protein sequences are
modified slightly in order to obtain sequence versions that for example form
better crystals for use in protein structure determination by X-ray crystallog-
raphy [99]. Deletions and amino acid substitutions may give rise to sequences
that generate database redundancy in a nontrivial manner.

The use of a redundant data set implies at least three potential sources
of error. First, if a data set of amino acid or nucleic acid sequences contains
large families of closely related sequences, statistical analysis will be biased
toward these families and will overrepresent features peculiar to them. Sec-
ond, apparent correlations between different positions in the sequences may
be an artifact of biased sampling of the data. Finally, if the data set is being
used for predicting a certain feature and the sequences used for making and
calibrating the prediction method—the training set—are too closely related to
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the sequences used for testing, the apparent predictive performance may be
overestimated, reflecting the method’s ability to reproduce its own particular
input rather than its generalization power.

At least some machine-learning approaches will run into trouble when cer-
tain sequences are heavily overrepresented in a training set. While algorithmic
solutions to this problem have been proposed, it may often be better to clean
up the data set first and thereby give the underrepresented sequences equal
opportunity. It is important to realize that underrepresentation can pose prob-
lems both at the primary structure level (sequence redundancy) and at the clas-
sification level. Categories of protein secondary structures, for example, are
typically skewed, with random coil being much more frequent than beta-sheet.

For these reasons, it can be necessary to avoid too closely related sequences
in a data set. On the other hand, a too rigorous definition of “too closely re-
lated” may lead to valuable information being discarded from the data set.
Thus, there is a trade-off between data set size and nonredundancy. The ap-
propriate definition of “too closely related” may depend strongly on the prob-
lem under consideration. In practice, this is rarely considered. Often the test
data are described as being selected “randomly” from the complete data set,
implying that great care was taken when preparing the data, even though re-
dundancy reduction was not applied at all. In many cases where redundancy
reduction is applied, either a more or less arbitrary similarity threshold is
used, or a “representative” data set is made, using a conventional list of pro-
tein or gene families and selecting one member from each family.

An alternative strategy is to keep all sequences in a data set and then assign
weights to them according to their novelty. A prediction on a closely related
sequence will then count very little, while the more distantly related sequences
may account for the main part of the evaluation of the predictive performance.
A major risk in this approach is that erroneous data almost always will be asso-
ciated with large weights. Sequences with erroneous annotation will typically
stand out, at least if they stem from typographical errors in the feature tables
of the databases. The prediction for the wrongly assigned features will then
have a major influence on the evaluation, and may even lead to a drastic un-
derestimation of the performance. Not only will false sites be very hard to
predict, but the true sites that would appear in a correct annotation will often
be counted as false positives.

A very productive way of exploiting database redundancy—both in relation
to sequence retrieval by alignment and when designing input representations
for machine learning algorithms—is the sequence profile [226]. A profile de-
scribes position by position the amino acid variation in a family of sequences
organized into a multiple alignment. While the profile no longer contains in-
formation about the sequential pattern in individual sequences, the degree of
sequence variation is extremely powerful in database search, in programs such
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as PSI-BLAST, where the profile is iteratively updated by the sequences picked
up by the current version of the profile [12]. In later chapters, we shall re-
turn to hidden Markov models, which also implement the profile concept in
a very flexible manner, as well as neural networks receiving profile informa-
tion as input—all different ways of taking advantage of the redundancy in the
information being deposited in the public databases.

1.2 Genomes—Diversity, Size, and Structure

Genomes of living organisms have a profound diversity. The diversity relates
not only to genome size but also to the storage principle as either single- or
double-stranded DNA or RNA. Moreover, some genomes are linear (e.g. mam-
mals), whereas others are closed and circular (e.g. most bacteria).

Cellular genomes are always made of DNA [389], while phage and viral
genomes may consist of either DNA or RNA. In single-stranded genomes, the
information is read in the positive sense, the negative sense, or in both di-
rections, in which case one speaks of an ambisense genome. The positive
direction is defined as going from the 5’ to the 3’ end of the molecule. In
double-stranded genomes the information is read only in the positive direc-
tion (5’ to 3’ on either strand). Genomes are not always replicated directly;
retroviruses, for example, have RNA genomes but use a DNA intermediate in
the replication.

The smallest genomes are found in nonself-replicating suborganisms like
bacteriophages and viruses, which sponge on the metabolism and replica-
tion machinery of free-living prokaryotic and eukaryotic cells, respectively. In
1977, the 5,386 bp in the genome of the bacteriophage φX174 was the first
to be sequenced [463]. Such very small genomes normally come in one con-
tinuous piece of sequence. But other quite small genomes, like the 1.74 Mbp
genome of the hyperthermophilic archaeon Methanococcus jannaschii, which
was completely sequenced in 1996, may have several chromosomal compo-
nents. In M. jannaschii there are three, one of them by far the largest. The
much larger 3,310 Mbp human genome is organized into 22 chromosomes
plus the two that determine sex. Even among the primates there is variation
in the number of chromosomes. Chimpanzees, for example, have 23 chromo-
somes in addition to the two sex chromosomes. The chimpanzee somatic cell
nucleus therefore contains a total number of 48 chromosomes in contrast to
the 46 chromosomes in man. Other mammals have completely different chro-
mosome numbers, the cat, for example, has 38, while the dog has as many as
78 chromosomes. As most higher organisms have two near-identical copies
of their DNA (the diploid genome), one also speaks about the haploid DNA
content, where only one of the two copies is included.
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Figure 1.2: Intervals of Genome Sizes for Various Classes of Organisms. Note that the plot
is logarithmic in the number of nucleotides on the first axis. Most commonly, the variation
within one group is one order of magnitude or more. The narrow interval of genome sizes
among mammals is an exception to the general picture. It is tempting to view the second axis
as “organism complexity” but it is most certainly not a direct indication of the size of the gene
pool. Many organisms in the upper part of the spectrum, e.g., mammals, fish, and plants, have
comparable numbers of genes (see table 1.1).

The chromosome in some organisms is not stable. For example, the Bacillus
cereus chromosome has been found to consist of a large stable component
(2.4 Mbp) and a smaller (1.2 Mbp) less stable component that is more easily
mobilized into extra-chromosomal elements of varying sizes up to the order of
megabases [114]. This has been a major obstacle in determining the genomic
sequence, or just a genetic map, of this organism. However, in almost any
genome transposable elements can also be responsible for rearrangements, or
insertion, of fairly large sequences, although they have been not been reported
to cause changes in chromosome number. Some theories claim that a high
number of chromosomal components is advantageous and increases the speed
of evolution, but currently there is no final answer to this question [438].
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It is interesting that the spectrum of genome sizes is to some extent seg-
regated into nonoverlapping intervals. Figure 1.2 shows that viral genomes
have sizes in the interval from 3.5 to 280 Kbp, bacteria range from 0.5 to 10
Mbp, fungi from around 10 to 50 Mbp, plants start at around 50 Mbp, and
mammals are found in a more narrow band (on the logarithmic scale) around
1 Gb. This staircase reflects the sizes of the gene pools that are necessary for
maintaining life in a noncellular form (viruses), a unicellular form (bacteria),
multicellular forms without sophisticated intercellular communication (fungi),
and highly differentiated multicellular forms with many intercellular signaling
systems (mammals and plants). In recent years it has been shown that even
bacteria are capable of chemical communication [300]. Molecular messengers
may travel between cells and provide populationwide control. One famous
example is the expression of the enzyme luciferase, which along with other
proteins is involved in light production by marine bacteria. Still, this type of
communication requires a very limited gene pool compared with signaling in
higher organisms.

The general rule is that within most classes of organisms we see a huge
relative variation in genome size. In eukaryotes, a few exceptional classes
(e.g., mammals, birds, and reptiles) have genome sizes confined to a narrow
interval [116]. As it is possible to estimate the size of the unsequenced gaps,
for example by optical mapping, the size of the human genome is now known
with a quite high precision. Table 1.2 shows an estimate of the size for each of
the 24 chromosomes. In total the reference human genome sequence seems to
contain roughly 3,310,004,815 base pairs—an estimate that presumably will
change slightly over time.

The cellular DNA content of different species varies by over a millionfold.
While the size of bacterial genomes presumably is directly related to the level
of genetic and organismic complexity, within the eukaryotes there might be as
much as a 50,000-fold excess compared with the basic protein-coding require-
ments [116]. Organisms that basically need the same molecular apparatus can
have a large variation in their genome sizes. Vertebrates share a lot of basic
machinery, yet they have very different genome sizes. As early as 1968, it was
demonstrated that some fish, in particular the family Tetraodontidae, which
contains the pufferfish, have very small genomes [254, 92, 163, 534, 526]. The
pufferfish have genomes with a haploid DNA content around 400–500 Mbp,
six–eight times smaller than the 3,310 Mbp human genome. The pufferfish
Fugu rubripes genome is only four times larger than that of the much simpler
nematode worm Caenorhabditis elegans (100 Mbp) and eight times smaller
than the human genome. The vertebrates with the largest amount of DNA per
cell are the amphibians. Their genomes cover an enormous range, from 700
Mbp to more than 80,000 Mbp. Nevertheless, they are surely less complex than
most humans in their structure and behavior [365].
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Group Species Genes Genome size
Phages Bacteriophage MS2 4 0.003569

Bacteriophage T4 270 0.168899
Viruses Cauliflower mosaic virus 8 0.008016

HIV type 2 9 0.009671
Vaccinia virus 260 0.191737

Bacteria Mycoplasma genitalium 473 0.58
Mycoplasma pneumoniae 716 0.82
Haemophilus influenzae 1,760 1.83
Bacillus subtilis 3,700 4.2
Escherichia coli 4,100 4.7
Myxococcus xanthus 8,000 9.45

Archaea Methanococcus jannaschii 1,735 1.74
Fungi Saccharomyces cerevisiae 5,800 12.1
Protoctista Cyanidioschyzon merolae 5,000 11.7

Oxytricha similis 12,000 600
Arthropoda Drosophila melanogaster 15,000 180
Nematoda Caenorhabditis elegans 19,000 100
Mollusca Loligo pealii 20-30,000 2,700
Plantae Nicotiana tabacum 20-30,000 4,500

Arabidopsis thaliana 25,500 125
Chordata Giona intestinalis N 165

Fugu rubripes 30-40,000 400
Danio rerio N 1,900
Mus musculus 30-40,000 3,300
Homo sapiens 30-40,000 3,310

Table 1.1: Approximate Gene Number and Genome Sizes in Organisms in Different Evolutionary
Lineages. Genome sizes are given in megabases. N = not available. Data were taken in part
from [390] and references therein (and scaled based on more current estimates); others were
compiled from a number of different Internet resources, papers, and books.

1.2.1 Gene Content in the Human Genome and other Genomes

A variable part of the complete genome sequence in an organism contains
genes, a term normally defined as one or several segments that constitute an
expressible unit. The word gene was coined in 1909 by the Danish geneticist
Wilhelm Johannsen (together with the words genetype and phenotype) long
before the physical basis of DNA was understood in any detail.

Genes may encode a protein product, or they may encode one of the many
RNA molecules that are necessary for the processing of genetic material and
for the proper functioning of the cell. mRNA sequences in the cytoplasm are
used as recipes for producing many copies of the same protein; genes encod-
ing other RNA molecules must be transcribed in the quantities needed. Se-
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Human chromosome Size
Chr. 1 282,193,664
Chr. 2 253,256,583
Chr. 3 227,524,578
Chr. 4 202,328,347
Chr. 5 203,085,532
Chr. 6 182,415,242
Chr. 7 166,623,906
Chr. 8 152,776,421
Chr. 9 142,271,444
Chr. 10 145,589,288
Chr. 11 150,783,553
Chr. 12 144,282,489
Chr. 13 119,744,898
Chr. 14 106,953,321
Chr. 15 101,380,521
Chr. 16 104,298,331
Chr. 17 89,504,553
Chr. 18 86,677,548
Chr. 19 74,962,845
Chr. 20 66,668,005
Chr. 21 44,907,570
Chr. 22 47,662,662
Chr. X 162,599,930
Chr. Y 51,513,584

Table 1.2: Approximate Sizes for the 24 Chromosomes in the Human Genome Reference Se-
quence. Note that the 22 chromosome sizes do not rank according to the original numbering
of the chromosomes. Data were taken from the Ensembl (www.ensembl.org) and Santa Cruz
(genome.ucsc.edu) web-sites. In total the reference human genome sequence seems to contain
roughly 3,310,004,815 base pairs—an estimate that presumably will change slightly over time.

quence segments that do not directly give rise to gene products are normally
called noncoding regions. Noncoding regions can be parts of genes, either as
regulatory elements or as intervening sequences interrupting the DNA that di-
rectly encode proteins or RNA. Machine-learning techniques are ideal for the
hard task of interpreting unannotated genomic DNA, and for distinguishing
between sequences with different functionality.

Table 1.1 shows the current predictions for the approximate number of
genes and the genome size in organisms in different evolutionary lineages. In
those organisms where the complete genome sequence has now been deter-
mined, the indications of these numbers are of course quite precise, while in
other organisms only a looser estimate of the gene density is available. In some
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Species Haploid genome size Bases Entries
Homo sapiens 3,310,000,000 7,387,490,518 4,544,962
Mus musculus 3,300,000,000 1,527,228,639 2,793,543
Drosophila melanogaster 180,000,000 502,655,942 167,687
Arabidopsis thaliana 125,000,000 249,689,164 183,987
Caenorhabditis elegans 100,000,000 204,396,881 114,744
Oryza sativa 400,000,000 171,870,798 161,411
Tetraodon nigroviridis 350,000,000 165,542,107 189,000
Rattus norvegicus 2,900,000,000 114,331,466 229,838
Bos taurus 3,600,000,000 76,700,774 168,469
Glycine max 1,115,000,000 73,450,470 167,090
Medicago truncatula 400,000,000 60,606,228 120,670
Lycopersicon esculentum 655,000,000 56,462,749 109,913
Trypanosoma brucei 35,000,000 50,723,464 91,360
Hordeum vulgare 5,000,000,000 49,770,458 70,317
Giardia intestinalis 12,000,000 49,431,105 56,451
Strongylocentrotus purpur 900,000,000 47,633,412 77,554
Danio rerio 1,900,000,000 47,584,911 93,141
Xenopus laevis 3,100,000,000 46,517,145 92,041
Zea mays 5,000,000,000 45,978,459 98,818
Entamoeba histolytica 20,000,000 44,552,032 49,969

Table 1.3: The Number of Bases in GenBank rel. 123, April 2001, for the 20 Most Sequenced
Organisms. For some organisms there is far more sequence than the size of the genome, due to
strain variation and pure redundancy.

organisms, such as bacteria, where the genome size is a strong growth-limiting
factor, almost the entire genome is covered with coding (protein and RNA) re-
gions; in other, more slowly growing organisms the coding part may be as little
as 1–2%. This means that the gene density in itself normally will influence the
precision with which computational approaches can perform gene finding. The
noncoding part of a genome will often contain many pseudo-genes and other
sequences that will show up as false positive predictions when scanned by an
algorithm.

The biggest surprise resulting from the analysis of the two versions of the
human genome data [134, 170] was that the gene content may be as low as
in the order of 30,000 genes. Only about 30,000-40,000 genes were estimated
from the initial analysis of the sequence. It was not totally unexpected as the
gene number in the fruit fly (14,000) also was unexpectedly low [132]. But
how can man realize its biological potential with less than twice the number
of genes found in the primitive worm C. elegans? Part of the answer lies in
alternative splicing of this limited number of genes as well as other modes
of multiplexing the function of genes. This area has to some degree been ne-
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glected in basic research and the publication of the human genome illustrated
our ignorance all too clearly: only a year before the publication it was expected
that around 100-120,000 genes would be present in the sequence [361]. For
a complex organism, gene multiplexing makes it possible to produce several
different transcripts from many of the genes in its genome, as well as many
diferent protein variants from each transcript. As the cellular processing of
genetic material is far more complex (in terms of regulation) than previously
believed the need for sophisticated bioinformatics approaches with ability to
model these processes is also strongly increased.

One of the big open questions is clearly how a quite substantial increase
in organism complexity can arise from a quite modest increase in the size of
the gene pool. The fact that worms have almost as many genes as humans is
somewhat irritating, and in the era of whole cell and whole organism oriented
research, we need to understand how the organism complexity scales with the
potential of a fixed number of genes in a genome.

The French biologist Jean-Michel Claverie has made [132] an interesting
“personal” estimate of the biological complexity K and its relation to the num-
ber of genes in a genome, N. The function f that converts N into K could in
principle be linear (K ∼ N), polynomial (K ∼ Na), exponential (K ∼ aN ), K ∼ N!
(factorial), and so on. Claverie suggests that the complexity should be related
to the organism’s ability to create diversity in its gene expression, that is to
the number of theoretical transcriptome states the organism can achieve. In
the simplest model, where genes are assumed to be either active or inactive
(ON or OFF), a genome with N genes can potentially encode 2N states. When
we then compare humans to worms, we appear to be

230,000/220,000 � 103,000 (1.1)

more complex than nematodes thus confirming (and perhaps reestablishing)
our subjective view of superiority of the human species. In this simple model
the exponents should clearly be decreased because genes are not indepen-
dently expressed (due to redundance and/or coregulation), and the fact that
many of the states will be lethal. On the other hand gene expression is not
ON/OFF, but regulated in a much more graded manner. A quite trivial math-
ematical model can thus illustrate how a small increase in gene number can
lead to a large increase in complexity and suggests a way to resolve the appar-
ent N value paradox which has been created by the whole genome sequencing
projects. This model based on patterns of gene expression may seem very
trivial, still it represents an attempt to quantify “systemic” aspects of organ-
isms, even if all their parts still may be understood using more conventional,
reductionistic approaches [132].

Another fundamental and largely unsolved problem is to understand why
the part of the genome that code for protein, in many higher organisms, is
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quite limited. In the human sequence the coding percentage is small no matter
whether one uses the more pessimistic gene number N of 26,000 or the more
optimistic figure of 40,000 [170]. For these two estimates in the order of 1.1%
(1.4%) of the human sequence seems to be coding, with introns covering 25%
(36%) and the remaining intergenic part covering 75% (64%), respectively. While
it is often stated that the genes only cover a few percent, this is obviously not
true due to the large average intron size in humans. With the estimate of
40,000 genes more than one third of the entire human genome is covered by
genes.

The mass of the nuclear DNA in an unreplicated haploid genome in a given
organism is known as its C-value, because it usually is a constant in any one
narrowly defined type of organism. The C-values of eukaryotic genomes vary
at least 80,000-fold across species, yet bear little or no relation to organismic
complexity or to the number of protein-coding genes [412, 545]. This phe-
nomenon is known as the C-value paradox [518].

It has been suggested that noncoding DNA just accumulates in the nuclear
genome until the costs of replicating it become too great, rather than having
a structural role in the nucleus [412]. It became clear many years ago that the
extra DNA does not in general contain an increased number of genes. If the
large genomes contained just a proportionally increased number of copies of
each gene, the kinetics of DNA renaturation experiments would be very fast.
In renaturation experiments a sample of heat-denatured strands is cooled, and
the strands reassociate provided they are sufficiently complementary. It has
been shown that the kinetics is reasonably slow, which indicates that the ex-
tra DNA in voluminous genomes most likely does not encode genes [116]. In
plants, where some of the most exorbitant genomes have been identified, clear
evidence for a correlation between genome size and climate has been estab-
lished [116]; the very large variation still needs to be accounted for in terms of
molecular and evolutionary mechanisms. In any case, the size of the complete
message in a genome is not a good indicator of the “quality” of the genome
and its efficiency.

This situation may not be as unnatural as it seems. In fact, it is somewhat
analogous to the case of communication between humans, where the message
length fails to be a good measure of the quality of the information exchanged.
Short communications can be very efficient, for example, in the scientific lit-
erature, as well as in correspondence between collaborators. In many E-mail
exchanges the “garbage” has often been reduced significantly, leaving the es-
sentials in a quite compact form. The shortest known correspondence between
humans was extremely efficient: Just after publishing Les Misérables in 1862,
Victor Hugo went on holiday, but was anxious to know how the sales were go-
ing. He wrote a letter to his publisher containing the single symbol “?”. The
publisher wrote back, using the single symbol “!”, and Hugo could continue his
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Figure 1.3: The Exponential Growth in the Size of the GenBank Database in the Period 1983-
2001. Based on the development in 2000/2001, the doubling time is around 10 months. The
complete size of GenBank rel. 123 is 12,418,544,023 nucleotides in 11,545,572 entries (average
length 1076). Currently the database grows by more than 11,000,000 bases per day.

holiday without concern for this issue. The book became a best-seller, and is
still a success as a movie and a musical.

The exponential growth in the size of the GenBank database [62, 503] is
shown in figure 1.3. The 20 most sequenced organisms are listed in table 1.3.
Since the data have been growing exponentially at the same pace for many
years, the graph will be easy to extrapolate until new, faster, and even more
economical sequencing techniques appear. If completely new sequencing ap-
proaches are invented the growth rate will presumably increase even further.
Otherwise, it is likely that the rate will stagnate when several of the mammalian
genomes have been completed. If sequencing at that time is still costly, fund-
ing agencies may start to allocate resources to other scientific areas, resulting
in a lower production rate.

In addition to the publicly available data deposited in GenBank, proprietary
data in companies and elsewhere are also growing at a very fast rate. This
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means that the current total amount of sequence data known to man is un-
known. Today the raw sequencing of a complete prokaryotic genome may—in
the largest companies—take less than a day, when arrays of hundreds of se-
quencing machines are operating in parallel on different regions of the same
chromosome. Part of this kind of data will eventually be deposited in the
public databases, while the rest will remain in the private domain. For all or-
ganisms speed matters a lot, not the least due to the patenting that usually is
associated with the generation of sequence data.

1.3 Proteins and Proteomes

1.3.1 From Genome to Proteome

At the protein level, large-scale analysis of complete genomes has its counter-
part in what has become known as proteome analysis [299, 413]. Proteomes
contain the total protein expression of a set of chromosomes. In a multicellu-
lar organism this set of proteins will differ from cell type to cell type, and will
also change with time because gene regulation controls advances in develop-
ment from the embryonic stage and further on. Proteome research deals with
the proteins produced by genes from a given genome.

Unlike the word “genome” which was coined just after the First World War
by the German botanist Hans Winkler [561, 65], the word “proteome” entered
the scientific literature recently, in 1994 in papers by Marc Wilkins and Keith
Williams [559].

Proteome analysis not only deals with determining the sequence, location,
and function of protein-encoding genes, but also is strongly concerned with
the precise biochemical state of each protein in its posttranslational form.
These active and functional forms of proteins have in several cases been suc-
cessfully predicted using machine-learning techniques.

Proteins often undergo a large number of modifications that alter their ac-
tivities. For example, certain amino acids can be linked covalently (or nonco-
valently) to carbohydrates, and such amino acids represent so-called glycosy-
lation sites. Other amino acids are subjected to phosphorylation, where phos-
phate groups are added to the polypeptide chain. In both cases these changes,
which are performed by a class of specific enzymes, may be essential for the
functional role of the protein. Many other types of posttranslational modifica-
tions exist, such as addition of fatty acids and the cleavage of signal peptides
in the N-terminus of secretory proteins translocated across a membrane. To-
gether with all the other types, these modifications are very interesting in a
data-driven prediction context, because a relatively large body of experimen-
tally verified sites and sequences is deposited in the public databases.
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1.3.2 Protein Length Distributions

The evolution of living organisms selects polypeptide chains with the ability
to acquire stable conformations in the aqueous or lipid environments where
they perform their function. It is well known that interaction between residues
situated far from each other in the linear sequence of amino acids plays a cru-
cial role in the folding of proteins. These long-range effects also represent
the major obstacle to computational approaches to protein folding. Still, most
research on the topic concentrates on the local aspects of the structure eluci-
dation problem. This holds true for strategies involving prediction and clas-
sification as well as for computational approaches based on molecular forces
and the equations of motion.

Statistical analysis has played a major role in studies of protein sequences
and their evolution since the early studies of Ycas and Gamow [195, 575, 555].
Most work has focused on the statistics of local nonrandom patterns with a
specific structure or function, while reliable global statistics of entire genomes
have been made possible by the vast amounts of data now available.

The universe of protein sequences can be analyzed in its entirety across
species, but also in an organism-specific manner where, for example, the
length distribution of the polypeptide chains in the largest possible proteome
can be identified completely. A key question is whether the protein sequences
we see today represent “edited” versions of sequences that were of essentially
random composition when evolution started working on them [555]. Alterna-
tively, they could have been created early on with a considerable bias in their
composition.

Using the present composition of soluble proteins, one can form on the
order of 10112 “natural” sequences of length-100 amino acids. Only a very tiny
fraction of these potential sequences has been explored by Nature. A “random
origin hypothesis,” which asserts that proteins originated by stochastic pro-
cesses according to simple rules, has been put forward by White and Jacobs
[556, 555]. This theory can be taken formally as a null hypothesis when exam-
ining different aspects of the randomness of protein sequences, in particular
to what extent proteins can be distinguished from random sequences.

The evidence for long-range order and regularity in protein primary struc-
ture is accumulating. Surprisingly, species-specific regularity exists even at a
level below the compositional level: the typical length of prokaryotic proteins
is consistently different from the typical length in eukaryotes [64]. This may
be linked to the idea that the probability of folding into a compact structure in-
creases more rapidly with length for eukaryotic than for prokarytic sequences
[555]. It has been suggested that the observed differences in the sequence
lengths can be explained by differences in the concentration of disulfide bonds
between cysteine residues and its influence on the optimal domain sizes [304].
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Figure 1.4: Length Distributions for Predicted Protein Coding Regions in Entire Genomes. A. H.
influenzae, among the 1,743 regions, amino acid chains of lengths between 140 and 160 are the
most frequent. B. M. genitalium with 468 regions, and preferred amino acid chains of length
between 120 and 140 or 280 and 300. C. The archaeon M. jannaschii with 1,735 regions; amino
acid chains of length between 140 and 160 are the most frequent. D. S. cerevisiae, among the
6,200 putative protein coding regions, amino acid chains of length between 100 and 120 are
the most frequent; this interval is followed by the interval 120 to 140. As described in a 1997
correspondence in Nature, the S. cerevisiae set clearly contains an overrepresentation (of artifact
sequences) in the 100–120 length interval [144].

Several other types of long-range regularities have been investigated, for
example, the preference for identical or similar residue partners in beta-sheets
[543, 570, 268, 45] and in close contact pairs [273], the long- and short-distance
periodicity in packing density [175], and whether mutations in the amino acid
sequence are significantly correlated over long distances [515, 485, 214].

The advent of the complete genomes from both prokaryotic and eukaryotic
organisms has made it possible to check whether earlier observations based
on incomplete and redundant data hold true when single organisms are com-
pared. One quite surprising observation has been that proteins appear to be
made out of different sequence units with characteristic length of≈ 125 amino
acids in eukaryotes and ≈ 150 amino acids in prokaryotes [64]. This indicates a
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possible underlying order in protein sequence organization that is more funda-
mental than the sequence itself. If such a systematics has indeed been created
by evolution, the length distributions of the polypeptide chains may be more
fundamental than what conventionally is known as the “primary” structure of
proteins.

In 1995 the first complete genome of a free living organism, the prokary-
ote Haemophilus influenzae, was published and made available for analysis
[183]. This circular genome contains 1,830,137 bp with 1,743 predicted pro-
tein coding regions and 76 genes encoding RNA molecules. In figure 1.4 the
length distribution of all the putative proteins in this organism is shown. For
comparison, the figure also shows the length distributions of the ≈ 468 pro-
teins in the complete Mycoplasma genitalium genome [189], as well as the
≈ 1,735 predicted protein coding regions in the complete genome of the ar-
chaeon Methanococcus jannaschii [105].

By comparing Saccharomyces cerevisiae (figure 1.4) against the distribu-
tions for the prokaryotes, it is possible by mere inspection to observe that
the peaks for the prokaryote H. influenzae and the eukaryote S. cerevisiae are
positioned in what clearly are different intervals: at 140–160 and 100–120,
respectively.

Performing redundancy reduction together with spectral analysis has led
to the conclusion that a eukaryotic distribution from a wide range of species
peaks at 125 amino acids and that the distribution displays a periodicity based
on this size unit [64]. Figure 1.4D also clearly shows that weaker secondary and
tertiary peaks are present around 210 and 330 amino acids. This distribution
is based on the entire set of proteins in this organism, and not a redundancy
reduced version.

Interestingly, the distribution for the archaeon M. jannaschii lies in be-
tween the H. influenzae and the S. cerevisiae distributions. This is in accor-
dance with the emerging view that the archaeon kingdom shares many sim-
ilarities with eukaryotes rather than representing a special kind of bacteria
in the prokaryotic kingdom [564, 105, 197]. This indicates that the universal
ancestral progenote has induced conserved features in genomes of bacteria,
archaea, and eucaryota:

prokaryota(nonucleus) �≡ bacteria. (1.2)

This classification issue for archaeon organisms has led to confusion in text-
books and in the rational basis for classifying organisms in sequence data-
bases [197].

Annotated protein primary structures also accumulate rapidly in the public
databases. Table 1.4 shows the number of protein sequences in the top-scoring
organisms in one of the protein sequence databases, SWISS-PROT [24]. Figure
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Species Sequences
Homo sapiens 6,742
Saccharomyces cerevisiae 4,845
Escherichia coli 4,661
Mus musculus 4,269
Rattus norvegicus 2,809
Bacillus subtilis 2,229
Caenorhabditis elegans 2,163
Haemophilus influenzae 1,746
Schizosaccharomyces pombe 1,654
Drosophila melanogaster 1,443
Methanococcus jannaschii 1,429
Arabidopsis thaliana 1,240
Mycobacterium tuberculosi 1,228
Bos bovis 1,202
Gallus gallus 948

Table 1.4: The Number of Sequences for the 15 Most Abundant Organisms in SWISS-PROT rel.
39.16, April 2001.

1.5 shows the development of the size of this database. Like GenBank, it grows
exponentially, although at a much slower pace. This illustrates how much
more slowly the biologically meaningful interpretation of the predicted genes
arises. New techniques are needed, especially for functional annotation of the
information stemming from the DNA sequencing projects [513].

Another database which grows even more slowly is the Protein Data Bank
(PDB). This reflects naturally the amount of experimental effort that normally
is associated with the determination of three dimensional protein structure,
whether performed by X-ray crystallography or NMR. Still, as can be seen in
Figure 1.6 this database also grows exponentially, and due to the initiation of
many structural genomics projects in the US, Japan and Europe it is very likely
that this pattern will continue for quite a while.

1.3.3 Protein Function

Many functional aspects of proteins are determined mainly by local sequence
characteristics, and do not depend critically on a full 3D structure maintained
in part by long-range interactions [149]. In the context of overall functional
prediction, these characteristics can provide essential hints toward the precise
function of a particular protein, but they can also be of significant value in
establishing negative conclusions regarding compartmentalization—for exam-
ple, that a given protein is nonsecretory or nonnuclear.
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Figure 1.5: The Exponential Growth of the SWISS-PROT Database in the Period 1987–2001. The
size of SWISS-PROT rel. 39.16 is in the order of 34,800,000 amino acids from 95,000 entries.

One of the major tasks within bioinformatics in the postgenome era will
be to find out what the genes really do in concerted action, either by simul-
taneous measurement of the activity of arrays of genes or by analyzing the
cell’s protein complement [408, 360, 413]. It is not unlikely that it will be hard
to determine the function of many proteins experimentally, because the func-
tion may be related specifically to the native environment in which a particular
organism lives. Bakers yeast, Saccharomyces cerevisiae, has not by evolution
been designed for the purpose of baking bread, but has been shaped to fit
as a habitant of plant crops like grapes and figs [215]. Many genes may be
included in the genome for the purpose of securing survival in a particular
environment, and may have no use in the artificial environment created in the
laboratory. It may even, in many cases, be almost impossible to imitate the
natural host, with its myriad other microorganisms, and thereby determine
the exact function of a gene or gene product by experiment.

The only effective route toward the elucidation of the function of some of



22 Introduction

1

10

100

1000

10000

100000

1000000

10000000

1975 1980 1985 1990 1995 2000

N
um

be
r

Year

Growth of the Protein Data Bank

Entries

Amino acids

Av. length

Figure 1.6: The Exponential Growth of the PDB Database in the Period 1972–2001. The size
of PDB (April 19, 2001) is in the order of 6,033,000 amino acids from 14,910 entries (average
length 405 aa).

these so-called orphan proteins may be computational analysis and prediction,
which can produce valuable indirect evidence for their function. Many protein
characteristics can be inferred from the sequence. Some sequence features will
be related to cotranslational or postfolding modifications; others, to structural
regions providing evidence for a particular general three-dimensional topol-
ogy. Prediction along these lines will give a first hint toward functionality that
later can be subjected to experimental verification [288].

In the last couple of years a number of methods that do not rely on direct
sequence similarity have been published [380, 162, 271, 378]. One quite suc-
cessful method has been exploiting gene expression data obtained using DNA
array [425] and chip technology (see chapter 12). Genes of unknown function
that belong to a cluster of genes displaying similar expression over time, or tis-
sue types, may be assigned the function of the most prevalent gene function in
that cluster (provided the cluster has genes with known function as members).
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In this way functional information may be transferred between genes with lit-
tle or no sequence similarity. However, coregulated genes may also in many
cases have widely different functions, so often this approach cannot be used
alone. Another problem is that as the DNA arrays become larger and larger,
covering for example an entire mammalian genome, more and more clusters of
genes significantly down- or upregulated will appear, where not a single gene
has functional information assigned to it.

Another approach is the so-called “Rosetta stone” method, which is based
on patterns of domain fusions [379, 167]. The underlying idea is that if two
proteins in one organism exist as one fused multidomain protein in another
organism, this may indicate that the two proteins are involved in performing
the same function even though they are not directly related in sequence.

A third tool that can be used for linking together proteins of similar func-
tion is phylogenetic profiles [423]. In phylogenetic profiles each protein is
represented as the organisms in which homologs are observed. If two pro-
teins have identical (or very similar) phylogenetic profiles it indicates that they
normally are observed together—an organism encodes either both or neither
of the proteins in its genome. One possible explanation for this is that the
proteins together perform a similar function. Phylogenetic profiles should be
expected to become more powerful as more genomes become available. They
have been successfully applied to the yeast genome but until several multicel-
lular organisms have been sequenced they are of limited use for predicting the
function of human proteins.

1.3.4 Protein Function and Gene Ontologies

Genomewide assignment of function requires that the functional role of pro-
teins be described in a systematic manner using well defined categories, key-
words, and hierachies. A gene ontology is essentially a specification of relevant
concepts in molecular biology and the relationships among those concepts. If
information in the scientific literature and in databases is to be shared in the
most useful way, ontologies must be exchanged in a form that uses standard-
ized syntax and semantics. In practice this means for example that functional
categories and systematics must be designed to cover a wide range of organ-
isms, if not all, and that the system is able to incorporate new discoveries as
they appear over time.

One of the major developments [21, 22] in this area has been the creation of
the Gene Ontology Consortium, which has participation from different areas,
including fruitfly (FlyBase), budding yeast (Saccharomyces Genome Database),
mouse (Mouse Genome and Gene Expression Databases), brassica (The Ara-
bidopsis Information Resource), and nematode (WormBase). The goal of the
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Gene Ontology Consortium is to produce a dynamic controlled vocabulary that
is based on three organizing principles and functional aspects: (1) molecular
function, (2) biological process and (3) cellular component. A protein can rep-
resent one or more molecular functions, be used in one or more biological
processes, and be associated with one or more cellular components.

Molecular function describes the tasks performed by individual gene prod-
ucts; examples are transcription factor and DNA helicase. Biological process
describes broad biological goals, such as mitosis or purine metabolism, that
are accomplished by ordered assemblies of molecular functions. Cellular com-
ponent encompasses subcellular structures, locations, and macromolecular
complexes; examples include nucleus, telomere, and origin recognition com-
plex.

There are many ways to construct ontologies, including some with focus on
molecular complexes or the immune system; see for example the RiboWeb on-
tology [123] or the ImMunoGenetics ontology [213]. Another prominent exam-
ple is the EcoCyc ontology [307, 308], which is the ontology used in a database
describing the genome and the biochemical machinery of E. coli. The database
describes pathways, reactions, and enzymes of a variety of organisms, with
a microbial focus. EcoCyc describes for example each metabolic enzyme of E.
coli, including its cofactors, activators, inhibitors, and subunit structure. When
known, the genes encoding the subunits of an enzyme are also listed, as well
as the map position of a gene on the E. coli chromosome.

1.4 On the Information Content of Biological Sequences

The concept of information and its quantification is essential for understand-
ing the basic principles of machine-learning approaches in molecular biology
(for basic definitions see appendix B, for a review see [577]). Data-driven pre-
diction methods should be able to extract essential features from individual
examples and to discard unwanted information when present. These methods
should be able to distinguish positive cases from negative ones, also in the
common situation where a huge excess of negative, nonfunctional sites and
regions are present in a genome. This discrimination problem is of course in-
timately related to the molecular recognition problem [363, 544, 474] in the
cellular environment: How can macromolecules find the sites they are sup-
posed to interact with when similar sites are present in very large numbers?

Machine-learning techniques are excellent for the task of discarding and
compacting redundant sequence information. A neural network will, if not un-
reasonably oversized, use its adjustable parameters for storing common fea-
tures that apply to many data items, and not allocate individual parameters to
individual sequence patterns. The encoding principle behind neural network
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training procedures superimposes sequences upon one another in a way that
transforms a complex topology in the input sequence space into a simpler rep-
resentation. In this representation, related functional or structural categories
end up clustered rather than scattered, as they often are in sequence space.

For example, the set of all amino acid segments of length 13, where the
central residue is in a helical conformation, is scattered over a very large part
of the sequence space of segments of length 13. The same holds true for
other types of protein secondary structures like sheets and turns. In this se-
quence space, 2013 possible segments exist (when excluding the twenty-first
amino acid, selenocysteine). The different structural categories are typically
not found in nicely separated regions of sequence space [297, 244]; rather,
islands of sheets are found in sequence regions where segments preferably
adopt a helical conformation, and vice versa. Machine-learning techniques are
used because of their ability to cope with nonlinearities and to find more com-
plex correlations in sequence spaces that are not functionally segregated into
continuous domains.

Some sequence segments may even have ability to attain both the helix
and the sheet conformation, depending on the past history of interaction with
other macromolecules and the environment. Notably, this may be the case for
the prion proteins, which recently have been associated with mad cow disease,
and in humans with the Creutzfeldt–Jakob syndrome. In these proteins the
same sequence may adopt different very stable conformations: a normal con-
formation comprising a bundle of helices and a disease-inducing “bad” con-
formation with a mixture of helices and sheets. The bad-conformation prions
even have an autocatalytic effect, and can be responsible for the transforma-
tion of normal conformation prions into bad ones [266, 267, 444]. In effect,
the protein itself serves as carrier of structural information which can be in-
herited. To distinguish this pathogen from conventional genetic material, the
term “prion” was introduced to emphasize its proteinaceous and infectious
nature. The 1997 Nobel Prize for Physiology or Medicine was given to Stanley
B. Prusiner for his work on prions. The proposal that proteins alone can trans-
mit an infectious disease has come as a considerable surprise to the scientific
community, and the mechanisms underlying their function remain a matter of
hot debate.

Based on local sequence information, such conformational conflicts as
those in the prion proteins will of course be impossible to settle by any
prediction method. However, a local method may be able to report that a
piece of sequence may have a higher potential for, say, both helix and sheet
as opposed to coil. This has actually been the case for the prion sequences
[266, 267] when they are analyzed by one of the very successful machine-
learning methods in sequence analysis, the PHD method of Rost and Sander.
We return to this and other methods for the prediction of protein secondary
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structure in chapter 6.
Another issue related to redundancy is the relative importance of individual

amino acids in specifying the tertiary structure of a protein [347]. To put it
differently: What fraction of a protein’s amino acid sequence is sufficient to
specify its structure? A prize—the Paracelsus Challenge—has even been put
forth to stimulate research into the role of sequence specificity in contrast to
protein stability [450, 291, 449]. The task is to convert one protein fold into
another, while retaining 50% of the original sequence. Recently, a protein that
is predominantly beta-sheet has in this way been transmuted into a native-like,
stable, four-helix bundle [143]. These studies clearly show that the residues
determine the fold in a highly nonlinear manner. The identification of the
minimal requirements to specify a given fold will not only be important for
the design of prediction approaches, but also a significant step towards solving
the protein folding problem [143].

The analysis of the redundancy and information content of biological
sequences has been strongly influenced by linguistics since the late 1950s.
Molecular biology came to life at a time when scientific methodology in general
was affected by linguistic philosophy [326]. Many influential ideas stemming
from the philosophical and mathematical treatment of natural languages
were for that reason partly “recycled” for the analysis of “natural” biological
sequences—and still are for that matter (see chapter 11). The digital nature
of genetic information and the fact that biological sequences are translated
from one representation to another in several consecutive steps have also
contributed strongly to the links and analogies between the two subjects.

The study of the translation genetic code itself was similarly influenced by
the time at which the code was cracked. The assignment of the 20 amino acids
and the translation stop signal to the 64 codon triplets took place in the 1960s,
when the most essential feature a code could have was its ability to perform
error correction. At that time the recovery of messages from spacecraft was a
key topic in coding and information theory. Shannon’s information-theoretical
procedures for the use of redundancy in encoding to transmit data over noisy
channels without loss were in focus. In the case of the genetic code, its block
structure ensures that the most frequent errors in the codon–anticodon recog-
nition will produce either the same amino acid, as intended, or insert an amino
acid with at least some similar physicochemical properties, most notably its
hydrophobicity. The importance of other nonerror-correcting properties of
the genetic code may have been underestimated, and we shall see in chapter 6
that a neural network trained on the mapping between nucleotide triplets and
amino acids is simpler for the standard code, and much more complex when
trained on more error-correcting genetic codes that have been suggested as
potential alternatives to the code found by evolution [524].

The amount of information in biological sequences is related to their com-
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pressibility. Intuitively, simple sequences with many repeats can be repre-
sented using a shorter description than complex and random sequences that
never repeat themselves. Data-compression algorithms are commonly used in
computers for increasing the capacity of disks, CD-ROMs, and magnetic tapes.
Conventional text-compression schemes are so constructed that they can re-
cover the original data perfectly without losing a single bit. Text-compression
algorithms are designed to provide a shorter description in the form of a less
redundant representation—normally called a code—that may be interpreted
and converted back into the uncompressed message in a reversible manner
[447]. The literature on molecular biology itself is full of such code words,
which shortens this particular type of text. The abbreviation DNA, for deoxyri-
bonucleic acid, is one example that contributes to the compression of this book
[577].

In some text sequences—for example, the source code of a computer
program—losing a symbol may change its meaning drastically, while com-
pressed representations of other types of data may be useful even if the
original message cannot be recovered completely. One common example is
sound data. When sound data is transmitted over telephone lines, it is less
critical to reproduce everything, so “lossy” decompression in this case can be
acceptable. In lossless compression, the encoded version is a kind of program
for computing the original data. In later chapters both implicit and explicit
use of compression in connection with machine learning will be described.

In section 1.2 an experimental approach to the analysis of the redundancy
of large genomes was described. If large genomes contained just a proportion-
ally increased number of copies of each gene, the kinetics of DNA renaturation
experiments would be much faster than observed. Therefore, the extra DNA in
voluminous genomes most likely does not code for proteins [116], and conse-
quently algorithmic compression of sequence data becomes a less trivial task.

The study of the statistical properties of repeated segments in biologi-
cal sequences, and especially their relation to the evolution of genomes, is
highly informative. Such analysis provides much evidence for events more
complex than the fixation and incorporation of single stochastically generated
mutations. Combination of interacting genomes, both between individuals in
the same species and by horizontal transfer of genetic information between
species, represents intergenome communication, which makes the analysis of
evolutionary pathways difficult.

Nature makes seemingly wasteful and extravagant combinations of gen-
omes that become sterile organisms unable to contribute further to the evo-
lution of the gene pool. Mules are well-known sterile crosses of horses and
donkeys. Less well known are ligers, the offspring of mating male LIons and
female tiGERS. Tigrons also exist. In contrast to their parents, they are very
nervous and uneasy animals; visually they are true blends of the most char-
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Figure 1.7: A Photograph of a Liger, the Cross between a Lion and a Tiger. Courtesy of the Los
Angeles Wild Animal Way Station (Beverly Setlowe).

acteristic features of lions and tigers. It is unclear whether free-living ligers
can be found in the wild; most of their potential parents inhabit different
continents1, but at the Los Angeles Wild Animal Way Station several ligers
have been placed by private owners who could no longer keep them on their
premises. Figure 1.7 shows this fascinating and intriguing animal.

In biological sequences repeats are clearly—from a description length
viewpoint—good targets for compaction. Even in naturally occurring se-
quence without repeats, the statistical biases—for example, skew dipeptide,
and skew di- and trinucleotide, distributions—will make it possible to find
shorter symbol sequences where the original message can be rewritten using
representative words and extended alphabets.

The ratio between the size of an encoded corpus of sequences and the
original corpus of sequences yields the compression rate, which quantifies

1In a few Asian regions, lions and tigers live close to one another, for example, in Gujarat in
the northwestern part of India.
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globally the degree of regularity in the data:

RC = SE
SO
. (1.3)

One important difference between natural text and DNA is that repeats oc-
cur differently. In long natural texts, repeats are often quite small and close to
each other, while in DNA, long repeats can be found far from each other [447].
This makes conventional sequential compression schemes [56] less effective
on DNA and protein data. Still, significant compression can be obtained even
by algorithms designed for other types of data, for example, the compress rou-
tine from the UNIX environment, which is based on the Lempel–Ziv algorithm
[551]. Not surprisingly, coding regions, with their reading frame and triplet
regularity, will normally be more compressible than more random noncoding
regions like introns [279]. Functional RNAs are in general considered to be less
repetitive than most other sequences [326], but their high potential for fold-
ing into secondary structures gives them another kind of inherent structure,
reducing their randomness or information content.

Hidden Markov models are powerful means for analyzing the sequential
pattern of monomers in sequences [154]. They are generative models that can
produce any possible sequence in a given language, each message with its own
probability. Since the models normally are trained to embody the regularity
in a sequence set, the vast majority of possible sequences end up having a
probability very close to 0. If the training is successful, the sequences in the
training set (and, hopefully, their homologues) end up having a higher proba-
bility. One may think of a hidden Markov model as a tool for parameterizing
a distribution over the space of all possible sequences on a given alphabet. A
particular family of proteins—globins, for example—will be a cloud of points
in sequence space. Training a model on some of these sequences is an attempt
to create a distribution on sequence space that is peaked over that cloud.

1.4.1 Information and Information Reduction

Classification and prediction algorithms are in general computational means
for reducing the amount of information. The input is information-rich se-
quence data, and the output may be a single number or, in the simplest case,
a yes or no representing a choice between two categories. In the latter case the
output holds a maximum of one bit if the two possibilities are equally likely.
A segregation of amino acid residues, depending on whether they are in an
alpha-helical conformation or not, will be such a dichotomy, where the aver-
age output information will be significantly under one bit per residue, because
in natural proteins roughly only 30% of the amino acids are found in the heli-
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cal category. On average less than one yes/no question will then be required
to “guess” the conformational categories along the sequences.

The contractive character of these algorithms means that they cannot be
inverted; prediction programs cannot be executed backward and thus return
the input information. From the output of a neural network that predicts the
structural class of an amino acid residue, one cannot tell what particular input
amino acid it was, and even less its context of other residues. Similarly, the log-
likelihood from a hidden Markov model will not make it possible to reproduce
the original sequence to any degree.

In general, computation discards information and proceeds in a logically
irreversible fashion. This is true even for simple addition of numbers; the sum
does not hold information of the values of the addends. This is also true for
much of the sequence-related information processing that takes place in the
cell. The genetic code itself provides a most prominent example: the degen-
erate mapping between the 64 triplets and the 20 amino acids plus the trans-
lation stop signal. For all but two amino acids, methionine and tryptophan,
the choice between several triplets will make it impossible to retrieve the en-
coding mRNA sequence from the amino acids in the protein or which of the
three possible stop codons actually terminated the translation. The individ-
ual probability distribution over the triplets in a given organism—known as its
codon usage—determines how much information the translation will discard
in practice.

Another very important example is the preceding process, which in eukary-
otes produces the mature mRNA from the pre-mRNA transcript of the genomic
DNA. The noncoding regions, introns, which interrupt the protein coding part,
are removed and spliced out in the cell nucleus (see also sections 1.1.2 and
6.5.4) But from the mature mRNA it seems difficult or impossible to locate
with high precision the junctions where the intervening sequences belonged
[495, 496], and it will surely be impossible to reproduce the intron sequence
from the spliced transcript. Most of the conserved local information at the
splice junctions is in the introns. This makes sense because the exons, making
up the mature mRNA sequence, then are unconstrained in terms of their pro-
tein encoding potential. Interestingly, specific proteins seem to associate with
the exon-exon junctions in the mature mRNA only as a consequence of splicing
[256], thus making the spliced messenger “remember” where the introns were.
The splicing machinery leaves behind such signature proteins at the junctions,
perhaps with the purpose of influencing downstream metabolic events in vivo
such as mRNA transport, decay and translation.

Among the more exotic examples of clear-cut information reduction are
phenomena like RNA editing [59] and the removal of “inteins” from proteins
[301, 257]. In RNA editing the original transcript is postprocessed using guide
RNA sequences found elsewhere in the genome. Either single nucleotides or



On the Information Content of Biological Sequences 31

longer pieces are changed or skipped. It is clear that the original RNA copy of
the gene cannot in any way be recovered from the edited mRNA.

It has also been discovered that polypeptide chains in some cases are
spliced, sequence fragments known as inteins are removed, and the chain
ends are subsequently ligated together. In the complete genome of the ar-
chaeon Methanococcus jannaschii, a surprisingly large number of inteins were
discovered in the predicted open reading frames. Many other examples of
logically and physically irreversible processes exist. This fact is of course
related to the irreversible thermodynamic nature of most life processes.

The information reduction inherent in computational classification and
prediction makes it easier to see why in general it does not help to add extra
input data to a method processing a single data item. If strong and valuable
correlations are not present in the extra data added, the method is given the
increased burden of discarding even more information on the route toward
the output of a single bit or two. Despite the fact that the extra data contain
some exploitable features, the result will often be a lower signal-to-noise level
and a decreased prediction performance (see chapter 6).

Protein secondary structure prediction normally works better when based
on 13 amino acid segments instead of segments of size 23 or higher. This is
not due solely to the curse of dimensionality of the input space, with a more
sparse coverage of the space by a fixed number of examples [70]. Given the
amount of three-dimensional protein structure data that we have, the amount
of noise in the context of 10 extra residues exceeds the positive effect of the
long-range correlations that are in fact present in the additional sequence data.

Machine-learning approaches may have some advantages over other meth-
ods in having a built-in robustness when presented with uncorrelated data
features. Weights in neural networks vanish during training unless positive or
negative correlations keep them alive and put them into use. This means that
the 23-amino-acid context not will be a catastrophe; but it still cannot outper-
form a method designed to handle an input space where the relation between
signal and noise is more balanced.

Information reduction is a key feature in the understanding of almost any
kind of system. As described above, a machine-learning algorithm will create
a simpler representation of a sequence space that can be much more powerful
and useful than the original data containing all details.

The author of Alice in Wonderland, the mathematician Charles Dodgson
(Lewis Carroll), more than 100 years ago wrote about practical issues in re-
lation to maps and mapping. In the story “Sylvie and Bruno Concluded” the
character Mein Herr tells about the most profound map one can think of, a
map with the scale one kilometer per kilometer. He is asked, “Have you used it
much?” He answers, “It has not been unfolded yet. The farmers were against
it. They said that it would cover all the soil and keep the sunlight out! Now we
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use the country itself, as its own map. And I can assure you that it is almost
as good.”

In the perspective of Mein Herr, we should stay with the unstructured, flat-
file public databases as they are, and not try to enhance the principal features
by using neural networks or hidden Markov models.

1.4.2 Alignment Versus Prediction: When Are Alignments Reliable?

In order to obtain additional functional insights as well as additional hints
toward structural and functional relationships, new sequences are normally
aligned against all sequences in a number of large databases [79]. The fun-
damental question is: When is the sequence similarity high enough that one
may safely infer either a structural or a functional similarity from the pairwise
alignment of two sequences? In other words, given that the alignment method
has detected an overlap in a sequence segment, can a similarity threshold
be defined that sifts out cases where the inference will be reliable? Below
the threshold some pairs will be related and some will not, so subthreshold
matches cannot be used to obtain negative conclusions. It is well known that
proteins can be structurally very similar even if the sequence similarity is very
low. At such low similarity levels, pure chance will produce other pairwise
alignments that will mix with those produced by genuinely related pairs.

The nontrivial answer to this question is that it depends entirely on the par-
ticular structural or functional aspect one wants to investigate. The necessary
and sufficient similarity threshold will be different for each task. Safe struc-
tural inference will demand a similarity at one level, and functional inference
will in general require a new threshold for each functional aspect. Functional
aspects may be related to a sequence as a whole—for example, whether or not
a sequence belongs to a given class of enzymes. Many other functional aspects
depend entirely on the local sequence composition. For example, does the N-
terminal of a protein sequence have a signal peptide cleavage site at a given
position or not?

In general, one may say that in the zone of safe inference, alignment should
be preferred to prediction. In the best situations, prediction methods should
enlarge the regions of safe inference. This can be done by evaluation of the
confidence levels that are produced along with the predictions from many
methods, a theme treated in more detail in chapter 5.

Sander and Schneider pioneered the algorithmic investigation of the rela-
tionship between protein sequence similarity and structural similarity [462]. In
a plot of the alignment length against the percentage of identical residues in
the overlap, two domains could be discerned: one of exclusively structurally
similar pairs, and one containing a mixture of similar and nonsimilar pairs.
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Structural similarity was defined by more than 70% secondary structure assign-
ment identity in the overlap. It was observed that this criterion corresponds
to a maximum root-mean-square deviation of 2.5Å for a structural alignment
of the two fragments in three dimensions. The mixed region reflects the fact
that the secondary structure identity may exceed 70% by chance, especially for
very short overlaps, even in pairs of completely unrelated sequences.

The border between the two domains, and thereby the threshold for se-
quence similarity, measured in percentage identity, depends on the length
of the aligned region (the overlap). Sander and Schneider defined a length-
dependent threshold function: for overlap length l < 10, no pairs are above
the threshold; for 10 < l < 80, the threshold is 290.15l −0.562%; and for l > 80,
the threshold is 24.8%.

This threshold can be used to answer the question whether alignment is
likely to lead to a reliable inference, or whether one is forced to look for pre-
diction methods that may be available for the particular task. If the new
sequence is superthreshold, alignment or homology building should be the
preferred approach; if it is subthreshold, prediction approaches by more ad-
vanced pattern-recognition schemes should be employed, possibly in concert
with the alignment methods.

In this type of analysis the “safe zone of inference” is of course not 100%
safe and should be used as a guideline only, for example when constructing
test sets for validation of high-throughput prediction algorithms. In many
cases the change of a single amino acid is known to lead to a completely dif-
ferent, possibly unfolded and unfunctional protein. Part of the goal in the
so-called single-nucleotide polymorphism projects is to identify coding SNPs,
which may affect protein conformation and thereby for example influence dis-
ease susceptibility and/or alter the effect of drugs interacting with a particular
protein [394].

1.4.3 Prediction of Functional Features

The sequence identity threshold for structural problems cannot be used di-
rectly in sequence prediction problems involving functionality. If the aim is
safe inference of the exact position of a signal peptide cleavage site in a new
sequence from experimentally verified sites in sequences from a database, it
is a priori completely unknown what the required degree of similarity should
be.

Above, “structurally similar” was defined by quantification of the mean
distance in space. In an alignment, functional similarity means that any two
residues with similar function should match without any shift. Two cleavage
sites should line up exactly residue by residue, if a site in one sequence should
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be positioned unambiguously by the site in the other. In practice, whether
a perfect separation between a completely safe zone and a mixed zone can
be obtained by alignment alone will depend on the degree of conservation of
different types of functional sites.

This binary criterion for successful alignment can, together with a defini-
tion of the zone-separating principle, be used to determine a threshold func-
tion that gives the best discrimination of functional similarity [405]. The prin-
ciple for establishing a nonarbitrary threshold is general; the approach may
easily be generalized to other types of sequence analysis problems involving,
for instance, glycosylation sites, phosphorylation sites, transit peptides for
chloroplasts and mitochondria, or cleavage sites of polyproteins, and to nu-
cleotide sequence analysis problems such as intron splice sites in pre-mRNA,
ribosome binding sites, and promoters. But for each case a specific threshold
must be determined.

For problems such as those involving splice sites in pre-mRNA or glycosyla-
tion sites of proteins, there are several sites per sequence. One way of address-
ing this problem is to split each sequence into a number of subsequences, one
for each potential site, and then use the approach on the collection of sub-
sequences. Alternatively, the fraction of aligned sites per alignment may be
used as a functional similarity measure, in analogy with the structural similar-
ity used by Sander and Schneider (the percentage of identical secondary struc-
ture assignments in the alignment). In this case, a threshold value for func-
tional similarity—analogous to the 70% structural similarity threshold used by
Sander and Schneider—must be defined before the similarity threshold can be
calculated.

1.4.4 Global and Local Alignments and Substitution Matrix Entropies

The optimality of pairwise alignments between two sequences is not given by
some canonical or unique criterion with universal applicability throughout the
entire domain of sequences. The matches produced by alignment algorithms
depend entirely on the parameters quantitatively defining the similarity of
corresponding monomers, the cost of gaps and deletions, and most notably
whether the algorithms are designed to optimize a score globally or locally.

Some problems of biological relevance concern an overall, or global, com-
parison between two sequences, possibly with the exception of the sequence
ends, while others would be meaningless unless attacked by a subsequence an-
gle for the localization of segments or sites with similar sequential structure.

Classical alignment algorithms are based on dynamic programming—for
optimal global alignments, the Needleman–Wunsch algorithm [401, 481], and
for optimal local alignments, the Smith–Waterman algorithm [492] (see chapter



On the Information Content of Biological Sequences 35

4). Dynamic programming is a computing procedure to manage the combina-
torial explosion that would result from an exhaustive evaluation of the scores
associated with any conceivable alignment of two sequences. Still, dynamic
programming is computationally demanding, and a number of heuristics for
further reduction of the resources needed for finding significant alignments
have been developed [417, 419]. Other very fast and reliable heuristic schemes
do not build on dynamic programming, but interactively extend small subse-
quences into longer matches [13, 14]. The conventional alignment schemes
have been described in detail elsewhere [550, 428]; here we will focus on some
of the important aspects related to the preparation of dedicated data sets.

How “local” a local alignment scheme will be in practice is strongly influ-
enced by the choice of substitution matrix. If the score level for matches is
much higher than the penalty for mismatches, even local alignment schemes
will tend to produce relatively long alignments. If the mismatch score will
quickly eat up the match score, short, compact overlaps will result.

A substitution matrix specifies a set of scores sij for replacing amino acid i
by amino acid j. Some matrices are generated from a simplified protein evolu-
tion model involving amino acid frequencies, pi, and pairwise substitution fre-
quencies, qij , observed in existing alignments of naturally occurring proteins.
A match involving a rare amino acid may count more than a match involving
a common amino acid, while a mismatch between two interchangeable amino
acids contributes a higher score than a mismatch between two functionally
unrelated amino acids. A mismatch with a nonnegative score is known as a
similarity or a conservative replacement. Other types of substitution matrices
are based on the relationships between the amino acids according to the ge-
netic code, or physicochemical properties of amino acids, or simply whether
amino acids in alignments are identical or not.

All these different substitution matrices can be compared and brought on
an equal footing by the concept of substitution matrix entropy. As shown
by Altschul [8], any amino acid substitution matrix is, either implicitly or ex-
plicitly, a matrix of logarithms of normalized target frequencies, since the
substitution scores may be written as

sij = 1
λ

(
ln

qij
pipj

)
(1.4)

where λ is a scaling factor. Changing λ will change the absolute value of the
scores, but not the relative scores of different local alignments, so it will not
affect the alignments [405].

The simplest possible scoring matrices are identity matrices, where all the
diagonal elements have the same positive value (the match score, s), and all
the off-diagonal elements have the same negative value (the mismatch score,
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s̄). This special case has been treated by Nielsen [405]. An identity matrix may
be derived from the simplest possible model for amino acid substitutions,
where all 20 amino acids appear with equal probability and the off-diagonal
substitution frequencies are equal:

pi = 1
20 for all i,

qij =
{
q
q̄

for i = j
for i ≠ j.

(1.5)

In other words, when an amino acid mutates, it has equal probabilities q̄ of
changing into any of the 19 other amino acids.

There is a range of different identity matrices, depending on the ratio be-
tween the positive and negative scores, s/s̄. If s = −s̄, a local alignment must
necessarily contain more matches than mismatches in order to yield a positive
score, resulting in short and strong alignments, while if s � −s̄, one match
can compensate for many mismatches, resulting in long and weak alignments.
The percentage identity p in gapfree local identity matrix alignment has a min-
imum value

p >
−s̄
s − s̄ . (1.6)

We define r = q̄/q, the mutability or the probability that a given position in
the sequence has changed into a random amino acid (including the original
one). r = 0 corresponds to no changes, while r = 1 corresponds to an infinite
evolutionary distance.

Since the sum of all qij must be 1, we use the relation 20q + 380q̄ = 1 to
calculate the target frequencies

q = 1
20+ 380r

and q̄ = r
20+ 380r

(1.7)

and the sij values may be calculated using (1.4). Since the score ratio, s/s̄ , is
independent of λ and therefore a function of r , we can calculate r numerically
from the score ratio.

The relative entropy of an amino acid substitution matrix was defined thus
by Altschul:

H =
∑
i,j
qijsijbits (1.8)

where the sijs are normalized so that λ = ln 2 (corresponding to using the
base-2 logarithm in (1.4)). The relative entropy of a matrix can be interpreted
as the amount of information carried by each position in the alignment (see
also appendix B for all information-theoretic notions such as entropy and rel-
ative entropy).
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The shorter the evolutionary distance assumed in the calculation of the
matrix, the larger H is. At zero evolutionary distance (r = 0), the mismatch
penalty s̄ is infinite, that is, gaps are completely disallowed, and the rela-
tive entropy is equal to the entropy of the amino acid distribution: H =
−∑i pi log2pi. In the identity model case, H = log2 20 ≈ 4.32 bits, and
the local alignment problem is reduced to the problem of finding the longest
common substring between two sequences. Conversely, as the evolutionary
distance approaches infinity (r 	 1), all differences between the qij values
disappear and H approaches 0.

1.4.5 Consensus Sequences and Sequence Logos

When studying the specificity of molecular binding sites, it has been common
practice to create consensus sequences from alignments and then to choose
the most common nucleotide or amino acid as representative at a given po-
sition [474]. Such a procedure throws a lot of information away, and it may
be highly misleading when interpreted as a reliable assessment of the molecu-
lar specificity of the recognizing protein factors or nucleic acids. A somewhat
better alternative is to observe all frequencies at all positions simultaneously.

A graphical visualization technique based on the Shannon information con-
tent at each position is the sequence logo approach developed by Schneider
and coworkers [473]. The idea is to emphasize the deviation from the uniform,
or flat, distribution, where all monomers occur with the same probability, p. In
that case, p = 0.25 for nucleotide sequence alignments and p = 0.05 in amino
acid sequence alignments.

Most functional sites display a significant degree of deviation from the flat
distribution. From the observed frequencies of monomers at a given position,
i, the deviation from the random case is computed by

D(i) = log2 |A| +
|A|∑
k=1

pk(i) log2 pk(i), (1.9)

where |A| is the length of the alphabet, normally 4 or 20. Since the logarithm
used is base 2, D(i) will be measured in bits per monomer. In an amino acid
alignment D(i) will be maximal and equal log2 20 ≈ 4.32 when only one fully
conserved amino acid is found at a given position. Similarly, the deviation will
be two bits maximally in alignments of nucleotide sequences.

With the logo visualization technique a column of symbols is used to dis-
play the details of a consensus sequence. The total height of the column is
equal to the value of D(i), and the height of each monomer symbol, k, is
proportional to its probability at that position, pk(i). Monomers drawn with
different colors can be used to indicate physicochemical properties, such as
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charge and hydrophobicity, or nucleotide interaction characteristics, such as
weak or strong hydrogen bonding potential. Compared with the array of num-
bers in a weight matrix covering the alignment region, the logo technique is
quite powerful and fairly easy to use. When D is summed over the region of
the site, one gets a measure of the accumulated information in a given type of
site, for example, a binding site. D may indicate the strength of a binding site,
and can be compared against the information needed to find true sites in a
complete genome or protein sequence [474]. With this information-theoretical
formulation of the degree of sequence conservation, the problem of how pro-
teins can find their required binding sites among a huge excess of nonsites can
be addressed in a quantitative manner [474, 472].

Figures 1.8 and 1.9 show two examples of alignment frequencies visualized
by the logo technique. The first is from an alignment of translation initia-
tion sites in E. coli. In the nuclear part of eukaryotic genomes, the initiation
triplet—the start codon—is very well conserved and is almost always AUG, rep-
resenting the amino acid methionine. In prokaryotes several other initiation
triplets occur with significant frequencies, and the logo shows to what extent
the nucleotides at the three codon positions are conserved [422]. Since the
same E. coli ribosome complex will recognize all translation initiation sites,
the logo indicates the specificity of the interaction between ribosomal com-
ponents and the triplet sequence. The conserved Shine–Dalgarno sequence
immediately 5’ to the initiation codon is used to position the mRNA on the
ribosome by base pairing.

A logo is clearly most informative if only sequences that share a similar sig-
nal are included, but it can also be used in the process of identifying different
patterns belonging to different parts of the data. In the extremely thermophilic
archaeon Sulfolobus solfataricus, translation initiation patterns may depend on
whether genes lie inside operons or at the start of an operon or single genes.
In a recent study [523], a Shine-Dalgarno sequence was found upstream of
the genes inside operons, but not for the first gene in an operon or isolated
genes. This indicates that two different mechanisms are used for translation
initiation in this organism.

Figure 1.9 displays a logo of mammalian amino acid sequence segments
aligned at the start of alpha-helices [99]. The logo covers the transition region:
to the left, the conformational categories of coil and turn appear most often,
and to the right, amino acids frequent in alpha-helices are found at the tops
of the columns. Interestingly, at the N-terminus, or the cap of the helix, the
distribution of amino acids is more biased than within the helix itself [435].
A logo of the C-terminus helix shows the capping in the other end. Capping
residues are presumably an integral part of this type of secondary structure,
because their side chain hydrogen bonds stabilize the dipole of the helix [435].
An analogous delimitation of beta-sheets—so-called beta breakers—marks the
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Figure 1.8: Logo Showing an Alignment of Translation Start Triplets That Are Active in E. coli.
Translation starts at position 21 in the logo. The conventional initiation triplet ATG encoding
methionine is by far the most abundant and dominates the logo. The data were obtained from
[422].

termini of this chain topology [133].
Sequence logos are useful for a quick examination of the statistics in

the context of functional sites or regions, but they can also show the range
in which a sequence signal is present. If one aligns a large number of O-
glycosylation sites and inspects the logo, the interval where the compositional
bias extends will immediately be revealed. Such an analysis can be used not
only to shape the architecture of a prediction method but also to consider
what should actually be predicted. One may consider lumping O-glycosylated
serines and threonines together if their context shares similar properties [235].
If they differ strongly, individual methods handling the two residue types sep-
arately should be considered instead. In the cellular environment, such a
difference may also indicate that the enzymes that transfer the carbohydrates
to the two residues are nonidentical.

Sequence logos using monomers will treat the positions in the context of
a site independently. The logo will tell nothing about the correlation between
the different positions, or whether the individual monomers appear simulta-
neously at a level beyond what would be expected from the single-position
statistics. However, the visualization technique can easily handle the occur-
rence of, say, dinucleotides or dipeptides, and show pair correlations in the
form of stacks of combined symbols. The size of the alphabets, |A|, in (1.9)
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Figure 1.9: Logo Showing an Alignment of Alpha-Helix N-termini. The data comprised a nonre-
dundant set of mammalian proteins with known three-dimensional structure [99]. The helix
starts at position 7 in the logo. The secondary structure assignment was performed by the Kab-
sch and Sander algorithm [297]. The largest compositional bias in this region is observed at the
position just before the helix start.

will change accordingly; otherwise, the same formula applies.
Figure 1.10 shows an example of a dinucleotide-based logo of donor splice

sites in introns from the plant Arabidopsis thaliana. In addition to the well-
known consensus dinucleotides GT and GC (almost invisible) at the splice junc-
tion in the center of the logo, the logo shows that the GT dinucleotide, which
appears inside the intron at the third dinucleotide position, occurs more fre-
quently than expected.

A slight variation of the logo formula (1.9), based on relative entropy (or
Kullback–Leibler asymmetric divergence measure [342, 341]), is the following:

H (i) = H (P(i),Q(i)) =
|A|∑
k=1

pk(i) log
pk(i)
qk(i)

. (1.10)

This quantifies the contrast between the observed probabilities P(i) and a ref-
erence probability distribution Q(i). Q may, or may not, depend on the po-
sition i in the alignment. When displaying the relative entropy, the height of
each letter can also, as an alternative to the frequency itself, be computed from
the background scaled frequency at that position [219].

In order for the logo to be a reliable description of the specificity, it is
essential that the data entering the alignment be nonredundant. If a given
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site is included in multiple copies, the probability distribution will be biased
artificially.

In chapter 6 we will see how neural networks go beyond the positionwise
uncorrelated analysis of the sequence, as is the case for the simple logo visual-
ization technique and also for its weight matrix counterpart, where each posi-
tion in the matrix is treated independently. A weight matrix assigns weights to
the positions that are computed from the ratio of the frequencies of monomers
in an alignment of some “positive” sites and the frequencies in a reference dis-
tribution. A sum of the logarithms of the weights assigned to given monomers
in a particular sequence will give a score, and a threshold may be adjusted so
that it will give the best recognition of true sites, in terms of either sensitivity
or specificity.

Neural networks have the ability to process the sequence data nonlinearly
where correlations between different positions can be taken into account.
“Nonlinear” means essentially that the network will be able to produce correct
predictions in cases where one category is correlated with one of two features,
but not both of them simultaneously. A linear method would not be able to
handle such a two-feature case correctly.

In more complex situations, many features may be present in a given type
of site, with more complex patterns of correlation between them. The ability to
handle such cases correctly by definition gives the neural network algorithms
great power in the sequence data domain.

An O-glycosylation site may be one case where amino acids of both pos-
itive and negative charges may be acceptable and functional, but not both
types at the same time. A conventional monomer weight matrix cannot han-
dle this common situation. However, for some prediction problems one can
get around the problem by developing weight matrices based on dipeptides
or more complex input features. Another strategy may be to divide all the
positive cases into two or more classes, each characterized by its own weight
matrix. Such changes in the approach can in some cases effectively convert a
nonlinear problem into a linear one.

In general, the drawback of linear techniques is that it becomes impossible
to subtract evidence. In linear methods two types of evidence will combine and
add up to produce a high score, even if the biological mechanism can accept
only one of them at a time. A nonlinear method can avoid this situation simply
by decreasing the score if the combined evidence from many features exceeds
a certain level.

A clever change in the input representation will in many cases do part of the
job of transforming the topology of the sequence space into a better-connected
space in which isolated islands have been merged according to the functional
class they belong to. Since the correlations and features in sequences often are
largely unknown, at least when one starts the prediction analysis, the nonlinear
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Figure 1.10: A Logo of Donor Splice Sites from the Dicot Plant A. thaliana (cress). The logo
is based on frequencies of nonoverlapping dinucleotides in the exon/intron transition region,
using the standard Shannon information measure entering equation (1.9) with the alphabet size
|A| = 16. The logo was prepared on a nonredundant data set of sequences extracted from
GenBank [327].

potential of neural networks gives them a big advantage in the development
phase for many types of tasks.

The issue of which method to use has for many years been a highly dog-
matic matter in artificial intelligence. In the data domain of biological se-
quences, it is clear that many different methods will be able to perform at the
same level if one knows in advance which features to look for. If an analysis of
the weights in a neural network trained on a given task (see chapter 6) shows
that the network is being excited (or inhibited) toward a positive (or negative)
prediction by specific sequence features, rules can often be constructed that
also will have a high discriminatory power. It is the experience of many people
that machine-learning methods are productive in the sense that near-optimal
methods can be developed quite fast, given that the data are relatively clean;
it often can be much harder to try to design powerful rules from scratch.
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1.5 Prediction of Molecular Function and Structure

The methods and applications described in this book will be targeted toward
the agenda formulated by von Heijne in his early book on sequence analysis:
“What can you do with your sequence once you have it?” [540]. Applications
well suited for treatment by machine-learning approaches will be described
in detail in later chapters; here we give an annotated list of some important
computational problems that have been tackled within this framework in the
analysis of data from DNA, RNA, and protein sequences. In some cases se-
quences are represented by experimentally determined biochemical character-
istics rather than symbols from a finite alphabet of monomers.

1.5.1 Sequence-based Analysis

In most cases, single-stranded sequences are used, no matter whether the
object in the cellular environment is DNA or RNA. One exception is the anal-
ysis of structural elements of DNA, such as bendability or intrinsic bending
potential, which must be based on a true double-stranded interpretation of
the double helix.

Intron splice sites and branch points in eukaryotic pre-mRNA. Intervening
sequences that interrupt the genes of RNA and proteins are characterized, but
not unambiguously defined, by local features at the splice junctions. Introns
in protein-encoding genes present the most significant computational chal-
lenge. In some organisms, nuclear introns are few and their splice sites are
well conserved (as in S. cerevisiae), but in many other eukaryotes, including
man, it is a major problem to locate the correct transition between coding
and noncoding regions, and thus to determine the mature mRNA sequence
from the genomic DNA. In yeast, introns occur mainly in genes encoding
ribosomal proteins. The fact that genes in many organisms are being spliced
differently, depending on tissue type or stage of development, complicates
the task considerably. Weight matrices, neural networks, and hidden Markov
models have been applied to this problem in a multitude of different versions.

Gene finding in prokaryotes and eukaryotes. Machine-learning techniques
have been applied to almost all steps in computational gene finding, including
the assignment of translation start and stop, quantification of reading frame
potential, frame interruption of splice sites, exon assignment, gene modeling,
and assembly. Usually, highly diverse combinations of machine-learning
approaches have been incorporated in individual methods.
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Recognition of promoters—transcription initiation and termination. Initi-
ation of transcription is the first step in gene expression and constitutes an
important point of control in the organism. The initiation event takes place
when RNA polymerase—the enzyme that catalyzes production of RNA from
the DNA template—recognizes and binds to certain DNA sequences called
promoters. This prediction problem is hard due to both the large variable dis-
tance between various DNA signals that are the substrate for the recognition
by the polymerase, and the many other factors involved in regulation of the
expression level. The elastic matching abilities of hidden Markov models have
made them ideal for this task, especially in eukaryotes, but neural networks
with carefully designed input architecture have also been used.

Gene expression levels. This problem may be addressed by predicting
the strength of known promoter signals if the expression levels associated
with their genes have been determined experimentally. Alternatively, the
expression level of genes may be predicted from the sequence of the coding
sequence, where the codon usage and/or in some cases, the corresponding
codon adaption indices, have been used to encode the sequence statistics.

Prediction of DNA bending and bendability. Many transactions are influ-
enced and determined by the flexibility of the double helix. Transcription
initiation is one of them, and prediction of transcription initiation or curva-
ture/bendability from the sequence would therefore be valuable in the context
of understanding a large range of DNA-related phenomena.

Nucleosome positioning signals. Intimately related to the DNA flexibility is
the positioning of eukaryotic DNA when wrapped around the histone octamers
in chromatin. Detection of the periodicity requires non-integer sensitivity—or
an elastic matching ability as in hidden Markov models—because the signals
occur every 10.1–10.6 bp, or every full turn of the double-stranded helix.

Sequence clustering and cluster topology. Because sequence data are noto-
riously redundant, it is important to have clustering techniques that will put
sequences into groups, and also to estimate the intergroup distances at the
same time. Both neural networks, in the form of self-organizing maps, and
hidden Markov models have been very useful for doing this. One advantage
over other clustering techniques has been the unproblematic treatment of
large data sets comprising thousands of sequences.

Prediction of RNA secondary structure. The most powerful methods for
computing and ranking potential secondary structures of mRNA, tRNA, and
rRNA are based on the minimization of the free energy in the interaction be-
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tween base pairs and between pairs of base pairs and their stacking energies
[586, 260]. This is nontrivial for many reasons, one being that loop-to-loop
interactions are hard to assess without a combinatorial explosion in the num-
ber of structures to be evaluated. Neural networks and grammar methods
have had some success in handling features at which the more traditional
minimization procedures for obtaining the energetically most favored confor-
mation are less successful.

Other functional sites and classes of DNA and RNA. Many different types of
sites have been considered for separate prediction, including branch points
in introns, ribosome binding sites, motifs in protein–DNA interactions, other
regulatory signals, DNA helix categories, restriction sites, DNA melting points,
reading frame-interrupting deletions in EST sequences, classification of ri-
bosomal RNAs according to phylogenetic classes, and classification of tRNA
sequences according to species.

Protein structure prediction. This area has boosted the application of
machine-learning techniques within sequence analysis, most notably through
the work on prediction of protein secondary structure of Qian and Sejnowski
[437]. Virtually all aspects of protein structure have been tackled by machine
learning. Among the specific elements that have been predicted are categories
of secondary structure, distance constraints between residues (contacts), fold
class, secondary structure class or content, disulfide bridges between cysteine
residues, family membership, helical transmembrane regions and topology of
the membrane crossing, membrane protein class (number of transmembrane
segments), MHC motifs, and solvent accessibility.

Protein function prediction. Functionally related features that have been
considered for prediction are intracellular localization, signal peptide cleav-
age sites (secreted proteins), de novo design of signal peptide cleavage sites
(optimized for cleavage efficiency), signal anchors (N-terminal parts of type-II
membrane proteins), glycosylation signals for attachment of carbohydrates
(the state and type of glycosylation determines the lifetime in circulation;
this is strongly involved in recognition phenomena and sorting), phosphory-
lation and other modifications related to posttranslational modification (the
presence of phosphorylation sites indicates that the protein is involved in
intracellular signal transduction, cell cycle control, or mediating nutritional
and environmental stress signals), various binding sites and active sites in
proteins (enzymatic activity).

Protein family classification. The family association has been predicted from
a global encoding of the dipeptide frequencies into self-organizing maps
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and feed-forward neural networks, or local motif-based prediction that may
enhance the detection of more distant family relationships.

Protein degradation. In all organisms proteins are degraded and recycled. In
organisms with an immune system the specificity of the degradation is es-
sential for its function and the successful discrimination between self and
nonself. Different degradation pathways are active; in several of them pro-
teins are unfolded prior to proteolytic cleavage, and therefore the specificity
is presuambly strongly related to the pattern in the sequence and not to its 3D
structure. This general problem has therefore quite naturally been attacked by
machine-learning techniques, the main problem being the limited amount of
experimentally characterized data.



Chapter 2

Machine-Learning Foundations:
The Probabilistic Framework

2.1 Introduction: Bayesian Modeling

Machine learning is by and large a direct descendant of an older discipline,
statistical model fitting. Like its predecessor, the goal in machine learning is
to extract useful information from a corpus of data D by building good prob-
abilistic models. The particular twist behind machine learning, however, is to
automate this process as much as possible, often by using very flexible models
characterized by large numbers of parameters, and to let the machine take care
of the rest. Silicon machine learning also finds much of its inspiration in the
learning abilities of its biological predecessor: the brain. Hence, a particular
vocabulary is required in which “learning” often replaces “fitting.”

Clearly, machine learning is driven by rapid technological progress in two
areas:

• Sensors and storage devices that lead to large databases and data sets

• Computing power that makes possible the use of more complex models.

As pointed out in [455], machine-learning approaches are best suited for areas
where there is a large amount of data but little theory. And this is exactly the
situation in computational molecular biology.

While available sequence data are rapidly increasing, our current knowl-
edge of biology constitutes only a small fraction of what remains to be dis-
covered. Thus, in computational biology in particular, and more generally in
biology and all other information-rich sciences, one must reason in the pres-
ence of a high degree of uncertainty: many facts are missing, and some of

47
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the facts are wrong. Computational molecular biologists are, then, constantly
faced with induction and inference problems: building models from available
data. What are the right class of models and the right level of complexity?
Which details are important and which should be discarded? How can one
compare different models and select the best one, in light of available knowl-
edge and sometimes limited data? In short, how do we know if a model is
a good model? These questions are all the more acute in machine-learning
approaches, because complex models, with several thousand parameters and
more, are routinely used and sequence data, while often abundant, are inher-
ently “noisy.”

In situations where few data are available, the models used in machine-
learning approaches have sometimes been criticized on the ground that they
may be capable of accommodating almost any behavior for a certain setting
of their parameters, and that simpler models with fewer parameters should
be preferred to avoid overfitting. Machine-learning practitioners know that
many implicit constraints emerge from the structure of the models and, in fact,
render arbitrary behavior very difficult, if not impossible, to reproduce. More
important, as pointed out in [397], choosing simpler models because few data
are available does not make much sense. While it is a widespread practice and
occasionally a useful heuristic, it is clear that the amount of data collected and
the complexity of the underlying source are two completely different things. It
is not hard to imagine situations characterized by a very complex source and
relatively few data. Thus we contend that even in situations where data are
scarce, machine-learning approaches should not be ruled out a priori. But in
all cases, it is clear that questions of inference and induction are particularly
central to machine learning and to computational biology.

When reasoning in the presence of certainty, one uses deduction. This is
how the most advanced theories in information-poor sciences, such as physics
or mathematics, are presented in an axiomatic fashion. Deduction is not con-
troversial. The overwhelming majority of people agree on how to perform
deductions in specific way: if X implies Y , and X is true, then Y must be
true. This is the essence of Boole’s algebra, and at the root of all our digital
computers. When reasoning in the presence of uncertainty, one uses induc-
tion and inference: if X implies Y , and Y is true, then X is more plausible.
An amazing and still poorly known fact is that there is a simple and unique
consistent set of rules for induction, model selection, and comparison. It is
called Bayesian inference. The Bayesian approach has been known for some
time, but only recently has it started to infiltrate different areas of science and
technology systematically, with useful results [229, 372, 373]. While machine
learning may appear to some as an eclectic collection of models and learning
algorithms, we believe the Bayesian framework provides a strong underlying
foundation that unifies the different techniques. We now review the Bayesian
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framework in general. In the following chapters, we apply it to specific classes
of models and problems.

The Bayesian point of view has a simple intuitive description. The Bayesian
approach assigns a degree of plausibility to any proposition, hypothesis, or
model. (Throughout this book, hypothesis and model are essentially synony-
mous; models tend to be complex hypotheses with many parameters.) More
precisely, in order properly to carry out the induction process, one ought to
proceed in three steps:

1. Clearly state what the hypotheses or models are, along with all the back-
ground information and the data.

2. Use the language of probability theory to assign prior probabilities to the
hypotheses.

3. Use probability calculus for the inference process, in particular to eval-
uate posterior probabilities (or degrees of belief) for the hypotheses in
light of the available data, and to derive unique answers.

Such an approach certainly seems reasonable. Note that the Bayesian ap-
proach is not directly concerned with the creative process, how to generate
new hypotheses or models. It is concerned only with assessing the value of
models with respect to the available knowledge and data. This assessment
procedure, however, may be very helpful in generating new ideas.

But why should the Bayesian approach be so compelling? Why use the lan-
guage of probability theory, as opposed to any other method? The surprising
answer to this question is that it can be proved, in a strict mathematical sense,
that this is the only consistent way of reasoning in the presence of uncertainty.
Specifically, there is a small set of very simple commonsense axioms, the Cox
Jaynes axioms, under which it can be shown that the Bayesian approach is the
unique consistent approach to inference and induction. Under the Cox Jaynes
axioms, degrees of plausibility satisfy all the rules of probabilities exactly.
Probability calculus is, then, all the machinery that is required for inference,
model selection, and model comparison.

In the next section, we give a brief axiomatic presentation of the Bayesian
point of view using the Cox Jaynes axioms. For brevity, we do not present
any proofs or any historical background for the Bayesian approach, nor do we
discuss any controversial issues regarding the foundations of statistics. All of
these can be found in various books and articles, such as [51, 63, 122, 433,
284].
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2.2 The Cox Jaynes Axioms

The objects we deal with in inference are propositions about the world. For
instance, a typical proposition X is “Letter A appears in position i of sequence
O.” A proposition is either true or false, and we denote by X̄ the complement
of a proposition X. A hypothesis H about the world is a proposition, albeit a
possibly complex one composed of the conjunction of many more elementary
propositions. A model M can also be viewed as a hypothesis. The difference is
that models tend to be very complex hypotheses involving a large number of
parameters. In discussions where parameters are important, we will consider
that M = M(w), where w is the vector of all parameters. A complex model M
can easily be reduced to a binary proposition in the form “Model M accounts
for data D with an error level ε” (this vague statement will be made more
precise in the following discussion). But for any purpose, in what follows
there is no real distinction between models and hypotheses.

Whereas propositions are either true or false, we wish to reason in the
presence of uncertainty. Therefore the next step is to consider that, given
a certain amount of information I , we can associate with each hypothesis a
degree of plausibility or confidence (also called degree or strength of belief).
Let us represent it by the symbol π(X|I). While π(X|I) is just a symbol for
now, it is clear that in order to have a scientific discourse, one should be able
to compare degrees of confidence. That is, for any two propositions X and Y ,
either we believe in X more than in Y , or we believe in Y more than in X, or we
believe in both equally. Let us use the symbol > to denote this relationship,
so that we write π(X|I) > π(Y |I) if and only if X is more plausible than Y .
It would be very hard not to agree that in order for things to be sensible, the
relationship > should be transitive. That is, if X is more plausible than Y ,
and Y is more plausible than Z, then X must be more plausible than Z. More
formally, this is the first axiom,

π(X|I) > π(Y |I) and π(Y |I) > π(Z|I) imply π(X|I) > π(Z|I). (2.1)

This axiom is trivial; it has, however, an important consequence: > is an or-
dering relationship, and therefore degrees of belief can be expressed by real
numbers. That is, from now on, π(X|I) represents a number. This of course
does not mean that such a number is easy to calculate, but merely that such a
number exists, and the ordering among hypotheses is reflected in the ordering
of real numbers. To proceed any further and stand a chance of calculating
degrees of belief we need additional axioms or rules for relating numbers rep-
resenting strengths of belief.

The amazing fact is that only two additional axioms are needed to con-
strain the theory entirely. This axiomatic presentation is usually attributed to
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Cox and Jaynes [138, 283]. To better understand these two remaining axioms,
the reader may imagine a world of very simple switches, where at each instant
in time a given switch can be either on or off. Thus, all the elementary hypothe-
ses or propositions in this world, at a given time, have the simple form “switch
X is on” or “switch X is off.” (For sequence analysis purposes, the reader may
imagine that switch X is responsible for the presence or absence of the letter
X, but this is irrelevant for a general understanding.) Clearly, the more con-
fident we are that switch X is on (X), the less confident we are that switch X
is off (X̄ ). Thus, for any given proposition X, there should be a relationship
between π(X|I) and π(X̄|I). Without assuming anything about this relation-
ship, it is sensible to consider that, all else equal, the relationship should be
the same for all switches and for all types of background information, that is,
for all propositions X and I . Thus, in mathematical terms, the second axiom
states that there exists a function F such that

π(X̄|I) = F[π(X|I)]. (2.2)

The third axiom is only slightly more complicated. Consider this time two
switches X and Y and the corresponding four possible joint states. Then our
degree of belief that X is on and Y is off, for instance, naturally depends on our
degree of belief that switch X is on, and our degree of belief that switch Y is off,
knowing that X is on. Again, it is sensible that this relationship be independent
of the switch considered and the type of background information I . Thus, in
mathematical terms, the third axiom states that there exists a function G such
that

π(X,Y |I)= G[π(X|I),π(Y |X, I)]. (2.3)

So far, we have not said much about the information I . I is a proposition
corresponding to the conjunction of all the available pieces of information. I
can represent background knowledge, such as general structural or functional
information about biological macromolecules. I can also include specific ex-
perimental or other data. When it is necessary to focus on a particular corpus
of data D, we can write I = (I,D). In any case, I is not necessarily fixed and
can be augmented with, or replaced by, any number of symbols representing
propositions, as already seen in the right-hand side of (2.3). When data are
acquired sequentially, for instance, we may write I = (I,D1, . . . ,Dn). In a dis-
cussion where I is well defined and fixed, it can be dropped altogether from
the equations.

The three axioms above entirely determine, up to scaling, how to calculate
degrees of belief. In particular, one can prove that there is always a rescaling
κ of degrees of belief such that P(X|I) = κ(π(X|I)) is in [0,1]. Furthermore,
P is unique and satisfies all the rules of probability. Specifically, if degrees of
belief are restricted to the [0,1] interval, then the functions F and G must be
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given by F(x) = 1−x and G(x,y) = xy . The corresponding proof will not be
given here and can be found in [138, 284]. As a result, the second axiom can
be rewritten as the sum rule of probability,

P(X|I)+ P(X̄|I) = 1, (2.4)

and the third axiom as the product rule,

P(X, Y |I)= P(X|I)P(Y |X, I). (2.5)

From here on, we can then replace degrees of confidence by probabilities. Note
that if uncertainties are removed, that is, if P(X|I) is 0 or 1, then (2.4) and (2.5)
yield, as a special case, the two basic rules of deduction or Boolean algebra,
for the negation and conjunction of propositions [(1) “X or X̄” is always true;
(2) “X and Y ” is true if and only if both X and Y are true]. By using the
symmetry P(X, Y |I)= P(Y ,X|I) together with (2.5), one obtains the important
Bayes theorem,

P(X|Y , I)= P(Y |X, I)P(X|I)
P(Y |I) = P(X|I)P(Y |X, I)

P(Y |I) . (2.6)

The Bayes theorem is fundamental because it allows inversion: interchanging
conditioning and nonconditioning propositions. In a sense, it embodies infer-
ence or learning because it describes exactly how to update our degree of belief
P(X|I) in X, in light of the new piece of information provided by Y , to obtain
the new P(X|Y , I). P(X|I) is also called the prior probability, and P(X|Y , I), the
posterior probability, with respect to Y . This rule can obviously be iterated as
information becomes available. Throughout the book, P(X) is universally used
to denote the probability of X. It should be clear, however, that the probability
of X depends on the surrounding context and is not a universal concept. It
is affected by the nature of the background information and by the space of
alternative hypotheses under consideration.

Finally, one should be aware that there is a more general set of axioms for
a more complete theory that encompasses Bayesian probability theory. These
are the axioms of decision or utility theory, where the focus is on how to take
“optimal” decisions in the presence of uncertainty [238, 63, 431] (see also ap-
pendix A). Not surprisingly, the simple axioms of decision theory lead one to
construct and estimate Bayesian probabilities associated with the uncertain
environment, and to maximize the corresponding expected utility. In fact, an
even more general theory is game theory, where the uncertain environment in-
cludes other agents or players. Since the focus of the book is on data modeling
only, these more general axiomatic theories will not be needed.
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2.3 Bayesian Inference and Induction

We can now turn to the type of inference we are most interested in: deriving a
parameterized model M = M(w) from a corpus of data D. For simplicity, we
will drop the background information I from the following equations. From
Bayes theorem we immediately have

P(M|D) = P(D|M)P(M)
P(D)

= P(M)
P(D|M)

P(D)
. (2.7)

The prior P(M) represents our estimate of the probability that model M is
correct before we have obtained any data. The posterior P(M|D) represents
our updated belief in the probability that modelM is correct given that we have
observed the data set D. The term P(D|M) is referred to as the likelihood.

For data obtained sequentially, one has

P(M|D1 , . . . ,Dt) = P(M|D1, . . . ,Dt−1)
P(Dt|M,D1, . . . ,Dt−1)

P(Dt|D1, . . . ,Dt−1)
. (2.8)

In other words, the old posterior P(M|D1 , . . . ,Dt−1) plays the role of the new
prior. For technical reasons, probabilities can be very small. It is often easier
to work with the corresponding logarithms, so that

log P(M|D) = log P(D|M) + log P(M) − log P(D). (2.9)

To apply (2.9) to any class of models, we will need to specify the prior P(M)
and the data likelihood P(D|M). Once the prior and data likelihood terms are
made explicit, the initial modeling effort is complete. All that is left is cranking
the engine of probability theory. But before we do that, let us briefly examine
some of the issues behind priors and likelihoods in general.

2.3.1 Priors

The use of priors is a strength of the Bayesian approach, since it allows in-
corporating prior knowledge and constraints into the modeling process. It is
sometimes also considered a weakness, on the ground that priors are sub-
jective and different results can be derived with different priors. To these
arguments, Bayesians can offer at least four different answers:

1. In general, the effects of priors diminish as the number of data increases.
Formally, this is because the likelihood − log P(D|M) typically increases
linearly with the number of data points in D, while the prior − log P(M)
remains constant.
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2. There are situations where objective criteria, such as maximum entropy
and/or group invariance considerations, can be used to determine non-
informative priors (for instance, [228]).

3. Even when priors are not mentioned explicitly, they are used implicitly.
The Bayesian approach forces a clarification of one’s assumption without
sweeping the problem of priors under the rug.

4. Finally, and most important, the effects of different priors, as well as
different models and model classes, can be assessed within the Bayesian
framework by comparing the corresponding probabilities.

It is a matter of debate within the statistical community whether a general
objective principle exists for the determination of priors in all situations, and
whether maximum entropy (MaxEnt) is such a principle. It is our opinion that
such a general principle does not really exist, as briefly discussed at the end
of Appendix B. It is best to adopt a flexible and somewhat opportunistic atti-
tude toward the selection of prior distributions, as long as the choices, as well
as their quantitative consequences, are made explicit via the corresponding
probabilistic calculations. MaxEnt, however, is useful in certain situations. For
completeness, we now briefly review MaxEnt and group-theoretical considera-
tions for priors, as well as three prior distributions widely used in practice.

Maximum Entropy

The MaxEnt principle states that the prior probability assignment should be
the one with the maximum entropy consistent with all the prior knowledge
or constraints (all information-theoretic notions, such as entropy and rela-
tive entropy, are reviewed for completeness in appendix B). Thus the resulting
prior distribution is the one that “assumes the least,” or is “maximally non-
committal,” or has the “maximum uncertainty.” In the absence of any prior
constraints, this leads of course to a uniform distribution corresponding to
Laplace’s “principle of indifference.” Thus, when there is no information avail-
able on a parameter w, other than its range, a uniform prior over the range is
a natural choice of prior. MaxEnt applies in modeling situations parametrized
by a distribution P or by the corresponding histogram. MaxEnt is equivalent
to using the entropic prior P(P) = e−H (P)/Z, where H (P) is the entropy of
P . MaxEnt is applied and further discussed in section 3.2. MaxEnt can also be
viewed as a special case of an even more general principle, minimum relative
entropy [486] (see appendix B).
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Group-Theoretic Considerations

In many situations some, if not all, of the constraints on the prior distribution
can be expressed in group-theoretical terms, such as invariance with respect
to a group of transformations. A typical example is a scale parameter, such
as the standard deviation σ of a Gaussian distribution. Suppose that we have
only an idea of the range of σ , in the form ea < σ < eb. Then, within such
range, the density f(σ) of σ should be invariant to scaling of σ , and therefore
f should be proportional to dσ/σ . By simple normalization, we find

f(σ) = 1
b− a

dσ
σ
. (2.10)

This is equivalent to having logσ uniformly distributed on the interval [a, b]
or having the densities of σ and σm identical. Other examples of group in-
variance analysis can be found in [282, 228].

Useful Practical Priors: Gaussian, Gamma, and Dirichlet

When prior distributions are not uniform, two useful and standard priors for
continuous variables are the Gaussian (or normal) prior and the gamma prior.
Gaussian priors with 0 mean are often used for the initialization of the weights
between units in neural networks. A Gaussian prior, on a single parameter, has
the form

N (w|µ,σ) = 1√
2πσ

exp(−(w − µ)2
2σ2 ). (2.11)

In the present context, one of the reasons the Gaussian distribution is preemi-
nent is related to the maximum entropy principle. When the only information
available about a continuous density is its mean µ and its variance σ2, then
the Gaussian density N (µ,σ) is the one achieving maximal entropy [137] (see
Appendix B).

The gamma density [177] with parameters α and λ is given by

Γ(w|α,λ) = λα

Γ(α)
wα−1e−λw (2.12)

forw > 0, and 0 otherwise. Γ(α) is the gamma function Γ(α) = ∫∞0 e−xxα−1dx.
By varying α and λ and translating w, the gamma density allows a wide range
of priors, with more mass concentrated in one specific region of parameter
space. Gamma priors are useful whenever the range of a parameter is bounded
on one side—for instance, in the case of a positive parameter such as a stan-
dard deviation (σ ≥ 0).

Finally, in the case of multinomial distributions that play an essential role
in this book, such as the choice of a letter from an alphabet at a given position
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in a sequence, an important class of priors are the Dirichlet priors [63, 376]. By
definition, a Dirichlet distribution on the probability vector P = (p1, . . . , pK),
with parameters α and Q = (q1, . . . , qK), has the form

DαQ(P) = Γ(α)∏
i Γ(αqi)

K∏
i=1

pαqi−1
i =

K∏
i=1

pαqi−1
i
Z(i)

, (2.13)

with α,pi, qi ≥ 0 and
∑
pi =

∑
qi = 1. For such a Dirichlet distribution,

E(pi) = qi, Var(pi) = qi(1 − qi)/(α + 1), and Cov(pipj) = −qiqj/(α + 1).
Thus Q is the mean of the distribution, and α determines how peaked the dis-
tribution is around its mean. Dirichlet priors are important because they are
the natural conjugate priors for multinomial distributions, as will be demon-
strated in chapter 3. This simply means that the posterior parameter distri-
bution, after having observed some data from a multinomial distribution with
Dirichlet prior, also has the form of a Dirichlet distribution. The Dirichlet
distribution can be seen as the multivariate generalization of the beta distri-
bution, and can also be interpreted as a maximum entropy distribution over
the space of distributions P , with a constraint on the average distance (i.e. rela-
tive entropy) to a reference distribution determined by Q and α (see appendix
B).

2.3.2 Data Likelihood

In order to define P(D|M), one must come to grips with how a model M could
also give rise to a different observation set D′: in a Bayesian framework, se-
quence models must be probabilistic. A deterministic model assigns a prob-
ability 0 to all the data except the one it can produce exactly. This is clearly
inadequate in biology and perhaps is one of the major lessons to be derived
from the Bayesian point of view. Scientific discourse on sequence models—
how well they fit the data and how they can be compared with each other—is
impossible if the likelihood issue is not addressed honestly.

The likelihood question is clearly related to issues of variability and noise.
Biological sequences are inherently “noisy,” variability resulting in part from
random events amplified by evolution. Mismatches and differences between
specific individual sequences and the “average” sequence in a family, such as
a protein family, are bound to occur and must be quantified. Because the
same DNA or amino acid sequence will differ between individuals of the same
species, and even more so across species, modelers always need to think in
probabilistic terms. Indeed, a number of models used in the past in a more
or less heuristic way, without clear reference to probabilities, are suddenly
illuminated when the probabilistic aspects are made explicit. Dealing with
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the probabilistic aspects not only clarifies the issues and allows a rigorous
discourse, but often also suggests new modeling avenues.

The computation of the likelihood is of course model-dependent and can-
not be addressed in its generality. In section 2.4, we will outline some general
principles for the derivation of models where the likelihood can be estimated
without too many difficulties. But the reader should be aware that whatever
criterion is used to measure the difference or error between a model and the
data, such a criterion always comes with an underlying probabilistic model
that needs to be clarified and is amenable to Bayesian analysis. Indeed, if
the fit of a model M = M(w) with parameters w is measured by some error
function f(w,D) ≥ 0 to be minimized, one can always define the associated
likelihood to be

P(D|M(w)) = e−f(w,D)

Z
, (2.14)

where Z = ∫w e−f(w,D)dw is a normalizing factor (the “partition function” in
statistical mechanics) that ensures the probabilities integrate to 1. As a re-
sult, minimizing the error function is equivalent to maximum likelihood (ML)
estimation, or more generally maximum a posteriori (MAP) estimation. In par-
ticular, when the sum of squared differences is used to compare quantities,
a rather common practice, this implies an underlying Gaussian model. Thus
the Bayesian point of view clarifies the probabilistic assumptions that must
underlie any criteria for matching models with data.

2.3.3 Parameter Estimation and Model Selection

We now return to the general Bayesian inference machinery. Two specific mod-
els M1 and M2 can be compared by comparing their probabilities P(M1|D)
and P(M2|D). One objective often is to find or approximate the “best” model
within a class—that is, to find the set of parameters w maximizing the poste-
rior P(M|D), or log P(M|D), and the corresponding error bars (see appendix
A). This is called MAP estimation. In order to deal with positive quantities, this
is also equivalent to minimizing − log P(M|D):

E = − log P(M|D) = − log P(D|M) − log P(M)+ log P(D). (2.15)

From an optimization standpoint, the logarithm of the prior plays the role
of a regularizer, that is, of an additional penalty term that can be used to
enforce additional constraints, such as smoothness. Note that the term P(D)
in (2.15) plays the role of a normalizing constant that does not depend on the
parameters w, and is therefore irrelevant for this optimization. If the prior
P(M) is uniform over all the models considered, then the problem reduces to
finding the maximum of P(D|M), or log P(D|M). This is just ML estimation. In
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summary, a substantial portion of this book and of machine-learning practice
is based on MAP estimation, that is, the minimization of

E = − log P(D|M) − log P(M), (2.16)

or even the simpler ML estimation, that is, the minimization of

E = − log P(D|M). (2.17)

In most interesting models, the function being optimized is complex and its
modes cannot be solved analytically. Thus one must resort to iterative and
possibly stochastic methods such as gradient descent or simulated annealing,
and also settle for approximate or suboptimal solutions.

Bayesian inference, however, is iterative. Finding a highly probable model
within a certain class is only its first level. Whereas finding the optimal model
is common practice, it is essential to note that this is really useful only if the
distribution P(M|D) is sharply peaked around a unique optimum. In situations
characterized by a high degree of uncertainty and relatively small amounts of
data available, this is often not the case. Thus a Bayesian is really interested in
the function P(M|D) over the entire space of models rather than in its maxima
only, and more precisely in evaluating expectations with respect to P(M|D).
This leads to higher levels of Bayesian inference, as in the case of prediction
problems, marginalization of nuisance parameters, and class comparisons.

2.3.4 Prediction, Marginalization of Nuisance Parameters, and Class
Comparison

Consider a prediction problem in which we are trying to predict the output
value y of an unknown parameterized function fw , given an input x. It is easy
to show that the optimal prediction is given by the expectation

E(y) =
∫
w
fw(x)P(w|D)dw. (2.18)

This integral is the average of the predictions made by each possible model
fw , weighted by the plausibility P(w|D) of each model. Another example is
the process of marginalization, where integration of the posterior parameter
distribution is carried out only with respect to a subset of the parameters, the
so-called nuisance parameters [225]. In a frequentist framework, where proba-
bilities are defined in terms of observed frequencies, the notion of distribution
over the parameters is not defined, and therefore nuisance parameters cannot
be integrated out easily. Finally, one is often led to the problem of compar-
ing two model classes, C1 and C2. To compare C1 and C2 in the Bayesian
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framework, one must compute P(C1|D) and P(C2|D) using Bayes’ theorem:
P(C|D) = P(D|C)P(C)/P(D). In addition to the prior P(C), one must calculate
the evidence P(D|C) by averaging over the entire model class:

P(D|C) =
∫
w∈C

P(D,w|C)dw =
∫
w∈C

P(D|w,C)P(w|C)dw. (2.19)

Similar integrals also arise with hierarchical models and hyperparameters (see
below). In cases where the likelihood P(D|w,C) is very peaked around its
maximum, such expectations can be approximated using the mode, that is, the
value with the highest probability. But in general, integrals such as (2.18) and
(2.19) require better approximations—for instance using Monte Carlo sampling
methods [491, 396, 69], as briefly reviewed in chapter 4. Such methods, how-
ever, are computationally intensive and not always applicable to the models to
be considered. This book is mostly concerned only with likelihood calculations
and the first level of Bayesian inference (ML and MAP). The development of
methods for handling higher levels of inference is an active area of research,
and these should be considered whenever possible. The available computer
power is of course an important issue in this context.

2.3.5 Ockham’s Razor

As a final point raised in section 2.1, it does not make sense to choose a simple
model on the basis that available data are scarce. Everything else being equal,
however, it is true that one should prefer a simple hypothesis to a complex
one. This is Ockham’s razor. As pointed out by several authors, Ockham’s
razor is automatically embodied in the Bayesian framework [285, 373] in at
least two different ways. In the first, trivial way, one can introduce priors
that penalize complex models. But even without such priors, parameterized
complex models will tend to be consistent with a larger volume of data space.
Since a likelihood P(D|M) must sum to 1 over the space of data, if P(D|M)
covers a larger expanse of data space, the likelihood values for given data sets
will be smaller on average. Therefore, all else equal, complex models will tend
to assign a correspondingly smaller likelihood to the observed data.

2.3.6 Minimum Description Length

An alternative approach to modeling is the minimum description length (MDL)
[446]. MDL is related to ideas of data compression and information transmis-
sion. The goal is to transmit the data over a communication channel. Trans-
mitting the data “as is” is not economical: nonrandom data contains structure
and redundancies, and therefore must be amenable to compression. A good
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model of the data should capture their structure and yield good compression.
The optimal model is the one that minimizes the length of the total message
required to describe the data. This includes both the length required to specify
the model itself and the data given the model. To a first approximation, MDL is
closely related to the Bayesian point of view. According to Shannon’s theory of
communication [483], the length of the message required to communicate an
event that has probability p is proportional to − logp. Thus the most probable
model has the shortest description. Some subtle differences between MDL and
the Bayesian point of view can exist, however, but these will not concern us
here.

2.4 Model Structures: Graphical Models and Other Tricks

Clearly, the construction or selection of suitable models is dictated by the data
set, as well as by the modeler’s experience and ingenuity. It is, however, pos-
sible to highlight a small number of very general techniques or tricks that can
be used to shape the structure of the models. Most models in the literature
can be described in terms of combinations of these simple techniques. Since in
machine learning the starting point of any Bayesian analysis is almost always a
high-dimensional probability distribution P(M,D) and the related conditional
and marginal distributions (the posterior P(M|D), the likelihood P(D|M), the
prior P(M), and the evidence P(D)); these rules can be seen as ways of decom-
posing, simplifying, and parameterizing such high-dimensional distributions.

2.4.1 Graphical Models and Independence

By far the most common simplifying trick is to assume some independence
between the variables or, more precisely, some conditional independence of
subsets of variables, conditioned on other subsets of variables. These indepen-
dence relationships can often be represented by a graph where the variables
are associated with the nodes, and a missing edge represents a particular in-
dependence relationship (precise definitions can be found in appendix C). See
[416, 350, 557, 121, 499, 106, 348, 286] for general reviews, treatments, or
pointers to the large literature on this topic.

The independence relationships result in the fundamental fact that the
global high-dimensional probability distribution, over all variables, can be fac-
tored into a product of simpler local probability distributions over lower-
dimensional spaces associated with smaller clusters of variables. The clusters
are reflected in the structure of the graph.

Graphical models can be subdivided into two broad categories depending
on whether the edges of the associated graph are directed or undirected. Undi-
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rected edges are typical in problems where interactions are considered to be
symmetric, such as in statistical mechanics or image processing [272, 199,
392]. In the undirected case, in one form or another, these models are called
Markov random fields, undirected probabilistic independence networks, Boltz-
mann machines, Markov networks, and log-linear models.

Directed models are used in cases where interactions are not symmetric
and reflect causal relationships or time irreversibility [416, 286, 246]. This
is typically the case in expert systems and in all problems based on temporal
data. The Kalman filter, a tool widely used in signal processing and control, can
be viewed in this framework. In the case of temporal series, the independence
assumptions are often those used in Markov models. Not surprisingly, most if
not all of the models discussed in this book—NNs and HMMs in particular—
are examples of graphical models with directed edges. A systematic treatment
of graphical models in bioinformatics is given in chapter 9. Typical names
for such models in the literature are Bayesian networks, belief networks, di-
rected probabilistic independence networks, causal networks, and influence
diagrams. It is also possible to develop a theory for the mixed case [557],
where both directed and undirected edges are present. Such mixed graphs are
also called chain independence graphs. The basic theory of graphical models
is reviewed in appendix C.

Here we introduce the notation needed in the following chapters. By G =
(V , E) we denote a graph G with a set V of vertices and a set E of edges. If
the edges are directed, we write G = (V , �E). In an undirected graph, N(i)
represents the sets of all the neighbors of vertex i, and C(i) represents the set
of all the vertices that are connected to i by a path. So,

N(i) = {j ∈ V : (i, j) ∈ E}. (2.20)

In a directed graph, we use the obvious notation N−(i) and N+(i) to denote
all the parents of i and all the children of i, respectively. Likewise, C−(i) and
C+(i) denote the ancestors, or the “past,” and the descendants of i, or the
“future” of i. All these notations are extended in the obvious way to any set of
vertices I . So for any I ⊆ V ,

N(I) = {j ∈ V : ∃i ∈ I (i, j) ∈ E} − I. (2.21)

This is also called the boundary of I .
One fundamental observation is that in most applications the resulting

graphs are sparse. Thus the global probability distribution factors into a rel-
atively small number of relatively small local distributions. And this is key
to the implementation of efficient computational structures for learning and
inference, based on the local propagation of information between clusters of
variables in the graph. The following techniques are not independent of the
general graphical model ideas, but can often be viewed as special cases.
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2.4.2 Hidden Variables

In many models, it is typical to assume that the data result in part from the
action of hidden or latent variables, or causes, that either are not available in
the data gathered or perhaps are fundamentally unobservable [172]. Missing
data can also be treated as a hidden variable. The activations of the hidden
units of a network, or the state sequence of an HMM, are typical examples of
hidden variables. Another example is provided by the coefficients of a mix-
ture (see below). Obviously the parameters of a model, such as the weights
of an NN or the emission/transition probabilities of an HMM, could also be
regarded as hidden variables in some sense, although this would be an uncon-
ventional terminology. Typical inference problems in hidden variable models
are the estimation of the probability distribution over the set of hidden vari-
ables, its modes, and the corresponding expectations. These often appear as
subproblems of the general parameter estimation problem in large parameter-
ized models, such as HMMs. An important algorithm for parameter estimation
with missing data or hidden variable is the EM algorithm, described in chapter
4 and further demonstrated in chapter 7 on HMMs.

2.4.3 Hierarchical Modeling

Many problems have a natural hierarchical structure or decomposition. This
can result, for instance, from the existence of different time scales or length
scales in the problem. The clusters described above in the general section
on graphical modeling can also be viewed as nodes of a higher-level graphical
model for the data (see, for instance, the notion of junction tree in [350]).
In a related but complementary direction, the prior on the parameters of a
model can have a hierarchical structure in which parameters at one level of
the hierarchy are used to define the prior distribution on the parameters at
the next level in a recursive way, with the number of parameters typically
decreasing at each level as one ascends the hierarchy. All the parameters
above a given level are often called “hyperparameters” with respect to that
level.

Hyperparameters are used to provide more flexibility while keeping con-
trol over the complexity and structure of the model. Hyperparameters have
“high gain” in the sense that small hyperparameter variations can induce large
model variations at the level below. Hyperparameters also allow for parameter
reduction because the model prior can be calculated from a (usually smaller)
number of hyperparameters. In symbolic form,

P(w) =
∫
α

P(w|α)P(α)dα, (2.22)
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where α represents hyperparameters for the parameter w with prior P(α). As
a typical example, consider the connection weights in a neural network. In
a given problem, it may be a good idea to model the prior on a weight by
using a Gaussian distribution with mean µ and standard deviation σ . Having
a different set of hyperparameters µ and σ for each weight may yield a model
with too few constraints. All the σs of a given unit, or in an entire layer, can
be tied and assumed to be identical. At a higher level, a prior can be defined
on the σs, and so on. An example of a hierarchical Dirichlet model is given in
appendix D.

2.4.4 Hybrid Modeling/Parameterization

Parameterization issues are important in machine learning, if only because
the models used are often quite large. Even when the global probability dis-
tribution over the data and the parameters has been factored into a product
of simpler distributions, as a result of independence assumptions, one of-
ten must still parameterize the component distributions. Two useful general
approaches for parameterizing distributions are mixture models and neural
networks.

In mixture models, a complex distribution P is parameterized as a linear
convex combination of simpler or canonical distributions in the form

P =
n∑
i=1

λiPi, (2.23)

where the λi ≥ 0 are called the mixture coefficients and satisfy
∑
i λi = 1.

The distributions Pi are called the components of the mixture and can carry
their own parameters (means, standard deviations, etc.). A review of mixture
models can be found in [173, 522].

Neural networks are also used to reparameterize models, that is, to com-
pute model parameters as a function of inputs and connection weights. As we
shall see, this is in part because neural networks have universal approximation
properties and good flexibility, combined with simple learning algorithms. The
simplest example is perhaps in regression problems, where a neural network
can be used to calculate the mean of the dependent variable as a function
of the independent variable, the input. A more subtle example will be given
in chapter 9, where neural networks are used to calculate the transition and
emission parameters of an HMM. The term “hybrid” is sometimes used to de-
scribe situations in which different model classes are combined, although the
combination can take different forms.
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2.4.5 Exponential Family of Distributions

The exponential family of distributions is briefly reviewed in appendix A. Here
it suffices to say that many of the most commonly used distributions (Gaus-
sian, multinomial, etc.) belong to this family, and that using members of the
family often leads to computationally efficient algorithms. For a review of the
exponential family, with a comprehensive list of references, see [94].

2.5 Summary

We have briefly presented the Bayesian approach to modeling and inference.
The main advantage of a Bayesian approach is obvious: it provides a princi-
pled and rigorous approach to inference, with a strong foundation in proba-
bility theory. In fact, one of the most compelling reasons in favor of Bayesian
induction is its uniqueness under a very small set of commonsense axioms.
We grant that mathematicians may be more receptive than biologists to such
an argument.

The Bayesian framework clarifies a number of issues, on at least three dif-
ferent levels. First, a Bayesian approach forces one to clarify the prior knowl-
edge, the data, and the hypotheses. The Bayesian framework is entirely open
to, and actually encourages, questioning any piece of information. It deals
with the subjectivity inherent in the modeling process not by sweeping it un-
der the rug but, rather, by incorporating it up front in the modeling process. It
is fundamentally an iterative process where models are progressively refined.
Second, and this is perhaps the main lesson here, sequence models must be
probabilistic and come to grips with issues of noise and variability in the data,
in a quantifiable way. Without this step it is impossible to have a rigorous
scientific discourse on models, to determine how well they fit the data, and
ultimately to compare models and hypotheses. Third, the Bayesian approach
clarifies how to proceed with inference, that is, how to compare models and
quantify errors and uncertainties, basically by cranking the engine of proba-
bility. In particular, it provides unambiguous, unique answers to well-posed
questions. It defines the set of rules required to play a fair modeling game.
The basic step is to compute model plausibilities, with respect to the available
data and the associated expectations, using the rules of probability theory and
possibly numerical approximations.

The Bayesian approach can lead to a better understanding of the weak-
nesses of a model, and thereby help in generating better models. In addition,
an objective way of comparing models, and of making predictions based on
models, will become more important as the number, scope, and complexity of
models for biological macromolecules, structure, function, and regulation in-
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crease. Issues of model comparison and prediction will become progressively
more central as databases grow in size and complexity. New ideas are likely
to emerge from the systematic application of Bayesian probabilistic ideas to
sequence analysis problems.

The main drawback of the Bayesian approach is that it can be computa-
tionally intensive, especially when averages need to be computed over high-
dimensional distributions. For the largest sequence models used in this book,
one is unlikely to be able to carry out a complete Bayesian integration on cur-
rently available computers. But continuing progress in Monte Carlo [491, 69]
and other approximation techniques, as well as steady increases in raw com-
puting power in workstations and parallel computers, is encouraging.

Once the general probabilistic framework is established, the next central
idea is that of graphical models: to factor high-dimensional probability dis-
tributions by exploiting independence assumptions that have a graphical sub-
strate. Most machine-learning models and problems can be represented in
terms of recursive sparse graphs, at the levels of both the variables involved,
observed or hidden, and the parameters. Sparse recursive graphs appear as a
universal underlying language or representational structure for most models
and machine-learning applications.
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Chapter 3

Probabilistic Modeling and
Inference: Examples

What are the implications of a Bayesian approach for modeling? For any type
of model class, it is clear that the first step must be to make the likelihood
P(D|M) and the prior P(M) explicit. In this chapter, we look at a few simple
applications of the general probabilistic framework. The first is a very simple
sequence model based on die tosses. All other examples in the chapter, includ-
ing the basic derivation of statistical mechanics, are variations obtained either
by increasing the number of dice or by varying the observed data.

3.1 The Simplest Sequence Models

The simplest, but not entirely trivial, modeling situation is that of a single
coin flip. This model has a single parameter p and the data consist of a string,
containing a single letter, over the alphabet A = {H,T}, H for head and T for tail.
Since we are interested in DNA sequences, we shall move directly to a slightly
more complex version with four letters, rather than two, and the possibility of
observing longer strings.

3.1.1 The Single-Die Model with Sequence Data

The data D then consist of DNA strings over the four-letter alphabet A =
{A,C,G,T}. The simple model we want to use is to assume that the strings
have been obtained by independent tosses of the same four-sided die (figure
3.1).

67
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A
C

G
T

Figure 3.1: Two Views of the Four-Sided DNA Die Used to Generate of DNA Strings.

Because the tosses are independent and there is a unique underlying die,
for likelihood considerations it does not really matter whether we have many
strings or a single long string. So we assume that the data consist of a single
observation sequence of length N: D = {O}, with O = X1 . . .XN and Xi ∈ A. Our
model M has four parameters pA, pC, pG, pT satisfying pA + pC + pG + pT = 1.
The likelihood is then given by

P(D|M) =
∏
X∈A

pnXX = pnAA pnCC pnGG pnTT , (3.1)

where nX is the number of times the letter X appears in the sequence O. The
negative log-posterior is then

− log P(M|D) = −
∑
X∈A

nX logpX − log P(M)+ log P(D). (3.2)

If we assume a uniform prior distribution over the parameters, then the MAP
parameter estimation problem is identical to the ML parameter estimation
problem and can be solved by optimizing the Lagrangian

L = −
∑
X∈A

nX logpX − λ(1−
∑
X∈A

pX) (3.3)

associated with the negative log-likelihood and augmented by the normalizing
constraint. Here, and in the rest of the book, positivity constraints are checked
directly in the results. Setting the partial derivatives ∂L/∂pX to zero immedi-
ately yields pX = nX/λ. Using the normalization constraint gives λ = N so that
finally, as expected, we get the estimates

p∗X =
nX
N

for all X ∈ A. (3.4)
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Note that the value of the negative log-likelihood per letter, for the optimal
parameter set P∗, approaches the entropy (see appendix B) H (P∗) of P∗ as
N →∞:

lim
N→∞

− 1
N

∑
X∈A

nX log
nX

N
= −

∑
X∈A

p∗X logp∗X =H (P∗). (3.5)

Another way of looking at these results is to say that except for a constant
entropy term, the negative log-likelihood is essentially the relative entropy
between the fixed die probabilities pX and the observed frequencies nX/N. In
the section on statistical mechanics below, we will see how this is also related
to the concept of free energy.

The observed frequency estimate pX = nX/N is of course natural when N is
large. The strong law of large numbers tells us that for large enough values of
N, the observed frequency will almost surely be very close to the true value of
pX. But what happens if N is small, say N = 4? Suppose that in a sequence of
length 4 we do not observe the letter A at all? Do we want to set the probability
pA to zero? Probably not, especially if we do not have any reason to suspect
that the die is highly biased. In other words, our prior beliefs do not favor
model parameters with value 0. As described in chapter 2, the corresponding
natural prior in this case is not a uniform prior but rather a Dirichlet prior on
the parameter vector P . Indeed, with a Dirichlet prior DαQ(P) the negative
log-posterior becomes

− log P(M|D) = −
∑
X∈A

[nX +αqX − 1] logpX + logZ + log P(D). (3.6)

Z is the normalization constant of the Dirichlet distribution that does not
depend on the probabilities pX. Thus the MAP optimization problem is very
similar to the one previously solved, except that the counts nX are replaced by
nX +αqX − 1. We immediately get the estimates

p∗X =
nX + αqX − 1
N +α − |A| for all X ∈ A (3.7)

provided this estimate is positive. In particular, the effect of the Dirichlet prior
is equivalent to adding pseudocounts to the observed counts. With the proper
choice of average distribution Q (for instance, Q uniform) and α, the estimates
p∗X can never be negative or 0. When Q is uniform, we say that the Dirichlet
prior is symmetric. Notice that the uniform distribution over P is a special
case of symmetric Dirichlet prior, with qX = 1/α = 1/|A|. It is also clear from
(3.6) that the posterior distribution P(M|D) is a Dirichlet distributionDβR with
β = N +α and rX = (nX +αqX)/(N +α).

The expectation of the posterior is the vector rX which is slightly different
from the MAP estimate (3.1). This suggests using an alternative estimate for
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pX, the predictive distribution or MP (mean posterior) estimate

p∗X =
nX +αqX
N +α . (3.8)

This is in general a better choice. Here in particular the MP estimate mini-
mizes the expected relative entropy distance f(P∗) = E(H (P , P∗)), where the
expectation is taken with respect to the posterior P(P |D).

The die model with a single Dirichlet prior is simple enough such that one
can proceed analytically with higher levels of Bayesian inference. For instance,
we can compute the evidence P(D):

P(D) =
∫

P(D|w)P(w)dw =
∫
∑
pX=1

∏
X∈A

pnX+αqX−1
X

Γ(α)
Γ(αqX))

dpX. (3.9)

This integral is very similar to the integral of a Dirichlet distribution and there-
fore can be easily calculated, yielding

P(D) = Γ(α)∏
X∈A Γ(αqX)

∏
X∈A Γ(βrX)
Γ(β)

, (3.10)

This evidence is the ratio of the normalizing constants of the prior and poste-
rior distributions.

We leave it as an exercise for the reader to continue playing with the
Bayesian machinery. Useful exercises would be to find the values of α and
qX that maximize the evidence, to define a prior on α and qX using hyperpa-
rameters, and to study MAP and MP estimates when the prior distribution is a
mixture of Dirichlet distributions

P(P) =
∑
i
λiDαiQi(P) (3.11)

(see also appendix D and [489]). In the latter case, the posterior is also a
mixture of Dirichlet distributions. This is a general result: whenever the prior
distribution is a mixture of conjugate distributions, the posterior is also a
mixture of conjugate distributions.

3.1.2 The Single-Die Model with Counts Data

With the same die model, we now assume that available data consists of the
counts themselves, D = {nX}, rather than the actual sequence. A simple com-
binatorial calculation shows that the likelihood now has the form

P(D|M) = P(nX|pX) = N!∏
X∈A nX!

∏
X∈A

pnXX (3.12)
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with
∑

XnX = N. This is similar to (3.1), except for the factorial term that
counts the number of ways the set of numbers (nX) can be realized in a se-
quence of length N. This distribution on the counts nX generated by a simple
die model is also called a multinomial distribution, generalizing the notion of
binomial distribution associated with coin (that is, two-sided die) flips. With a
little abuse, the die model itself will sometimes be called a multinomial model.

With a Dirichlet prior DαQ(P) on the parameter vector P , a calculation
similar to the one above shows that the posterior distribution on P is also a
Dirichlet distribution DβR(P) with β = N + α and rX = (nX + αqX)/β. Not
surprisingly, the MAP and MP estimates P∗ are identical to (3.7) and (3.8).

We now consider the distribution that a fixed vector P induces on the
counts nX. Taking the logarithm of (3.12) and using Stirling’s approximation
formula for factorials

n! ≈ (n
e
)n
√

2πn, (3.13)

we get
log(P(D|P) ≈ C −H (nX/N,pX), (3.14)

where C is a constant independent of nX andH is the relative entropy between
the empirical distribution and P . When P is uniform except for constant terms,
the relative entropy above reduces to the entropy of the empirical distribution.
Therefore in this case

P(D|P) ≈ e
H (nX/N

Z
. (3.15)

This is called the entropic distribution. In other words, a uniform P induces an
entropic distribution over the counts nX, that is, over the space of all possible
histograms. As we will see in section 3.2, this is one of the standard justifica-
tions for the MaxEnt principle that amounts to using an entropic prior. Notice
the similarities but also the differences between a Dirichlet distribution and an
entropic distribution

exp(−∑X pX logpX)
Z

(3.16)

over P . We leave it as an exercise to show that if P has an entropic prior,
the posterior after observing nX is not entropic, nor Dirichlet. The entropic
distribution is not the conjugate of a multinomial. With an entropic prior, the
MAP estimate is still of the form p∗X = nX/N.

While the simple die model is of course very crude, it is important to note
that this is exactly the model we adopt when we compute first-order statis-
tics, that is, the proportion of each letter in a given family of sequences, such
as exons, introns, or a protein family. This can be viewed as a first step in
an iterative modeling process, and therefore the performance of subsequent
models must be evaluated with respect to the first-order model. The multiple-
die model of the next section and, in chapter 7, hidden Markov models (HMMs)
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are just slightly more complex generalizations of the simple die model. The
simple die model can trivially be extended by having strings of letters on each
face. This is equivalent to extending the alphabet. For instance, one can use a
die with 64 faces to model DNA triplets.

3.1.3 The Multiple-Die Model with Sequence Data

Another simple sequence model is the multiple-die model. Here the data con-
sist of K sequences, each of length N. For instance, the reader could think of a
multiple alignment of K sequences in which case the gap symbol “–” could be
considered one of the symbols in the alphabet. In the multiple-die model we
assume that there are N independent dice, one for each position, and that each
sequence is the result of flipping the N dice in a fixed order. Let piX denote the
probability of producing the letter X with die number i, and niX the number of
times the letter X appears in position i. Because the dice and the sequences
are assumed to be independent, the likelihood function is

P(D|M) =
N∏
i=1

∏
X∈A

pn
i
X

X . (3.17)

With uniform prior across all dice, a calculation identical to the single-die case
yields

pi∗X = niX
K

for all X ∈ A. (3.18)

Again we leave it as an exercise for the reader to study the effect of Dirichlet
priors on this model, and to consider possible generalizations (see also [376]).
A well-known class of models used in language modeling is the n-gram models.
In an n-gram model, there are |A|n−1 dice. Each die is associated with a differ-
ent prefix of length n − 1. Each die is a simple die with |A| faces, one letter
per face. Sequences are generated by scanning a window of length n, selecting
the die associated with the current prefix, and flipping it at random. Thus the
choice of the die to be flipped is not independent of the previous flips. These
n-gram models can be viewed as Markov models of order equal to the length
of the prefix, also called the “memory” of the model. The single-die model has
memory of length 0. There exist also variants with variable memory length (see
[448] for an example with application to biological sequences), as well as mix-
tures of higher-order Markov models, also called interpolated Markov models.
Higher-order models are computationally more expensive, with the number of
possible prefixes growing very rapidly with the size of the alphabet and the
memory length. With the small DNA alphabet, however, Markov models of
order 5 or so remain feasible.
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3.2 Statistical Mechanics

There are at least five good reasons to understand the rudiments of statistical
mechanics in connection with machine learning and computational biology.
First, statistical mechanics can be viewed as one of the oldest and best exam-
ples of Bayesian reasoning [280, 281], although the presentation often given is
slightly flawed in our opinion because of the confusion between MaxEnt and
Bayes. Second, statistical mechanics has traditionally been concerned with
deriving the statistical macroscopic properties of large ensembles of simple
microscopically interacting units—the equilibrium behavior, the phase tran-
sitions, and so on. The results and techniques of statistical mechanics are
useful in understanding the properties and learning evolution of a number of
graphical models used in machine learning [252, 482, 50]. Statistical mechan-
ical models have also been applied directly to biological macromolecules—
for instance, in the protein-folding problem (see [151] for a review). Finally,
statistical mechanics is useful for understanding several algorithms that are
fundamental for machine learning, such as simulated annealing and the EM
algorithms described in chapter 4.

Here we give a Bayesian derivation of statistical mechanics from first princi-
ples, and develop the basic concepts, especially those of the Boltzmann-Gibbs
distribution and free energy, that will be needed in the next chapters. In the
basic statistical mechanics framework, one considers a stochastic system that
can be in a number of “microscopic” states: S = {s1, . . . , s|S|}, with ps denoting
the probability of being in state s for a distribution P = (ps). This can be
viewed as a die model M(w), with parameters w = ps , although for the time
being it is not necessary to assume that the tosses are independent. The key
difference from the examples above is in the data. The faces of the die, the
microscopic states, are not observable but act as hidden variables. Instead, we
assume that there is a function f(s) of the states and that the only “macro-
scopic” observable quantity, the data, is the expectation or average of f . So,
with a slight abuse of notation, in this section we write D = E(f) = ∑s psf(s).

Very often in statistical mechanics the states have a microscopic structure
so that s = (x1, . . . , xn), where the xi are local variables. For instance, the xi
can be binary spin variables, in which case |S| = 2n. Likewise, f is typically
the energy of the system and can be written as a quadratic function in the
local variables: f(s) = f(x1, . . . , xn) =

∑
ij wijxixj +

∑
i wixi. The interaction

parameters wij can be local, as in the case of spins on a lattice, or long-range,
and are related to the underlying graphical model. While such assumptions are
important in modeling particular systems and developing a detailed theory,
they will not be needed in the following sections. The first question we can
ask is: Given the observation of the average of f , what can we say about the
state distribution P?
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3.2.1 The Boltzmann-Gibbs Distribution

Standard Derivation

Most standard treatments at this point are based on the maximum entropy
principle. Without any additional information, one ought to choose the distri-
bution P that satisfies the constraint

∑
s f (s)ps = D and has the highest en-

tropy, because this is the solution that is the most “spread out” and makes the
fewest additional assumptions. This problem can easily be solved by writing
down the Lagrangian L, which consists of a linear combination of the function
being optimized with the relevant constraints:

L = −
∑
s
ps logps − λ(

∑
s
psf(s) −D)− µ(

∑
s
ps − 1). (3.19)

By equating the partial derivatives of L with respect to ps to 0, we immediately
find that the only solution distributions are of the form

p∗s (λ) =
e−λf(s)

Z(λ)
, (3.20)

where the normalizing factor Z(λ) =∑s e−λf(s) is called the partition function.
In statistical mechanics, the Lagrange multiplier is related to the temperature
T of the system by the definition λ = 1/kT , where k is the Boltzmann constant.
For all our purposes here we will not need to consider the temperature and will
work directly with the parameter λ. Note, however, that λ, and therefore the
temperature, are entirely determined by the observation D, since we must have

∑
s

e−λf(s)

Z(λ)
f(s) = D. (3.21)

Often, it will even be sufficient to assume that λ = 1. The optimal distribution
P∗ is called the Boltzmann-Gibbs distribution of the system. It is important
to realize that any distribution P can be represented as a Boltzmann-Gibbs
distribution, at least at a fixed temperature, by using an energy function pro-
portional to − logP . It is also easy to see that a similar formula is derived when
there are multiple linear constraints on the parameters ps .

While the Boltzmann-Gibbs distribution is very useful, from a Bayesian
standpoint the standard derivation is not entirely satisfactory for three rea-
sons: (1) The prior distribution is not explicit. As a result, how would one
incorporate additional prior information on the ps , such as knowing that the
first state occurs more frequently than the others? (2) The probabilistic model
is not explicit. In particular, how one would calculate the likelihood P(D|ps);
(3) The justification for the use of MaxEnt is weak. In particular, is there any
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connection between MaxEnt and ML or MAP estimation? In all fairness, the
use of MaxEnt is partially justified by the combinatorial argument given above,
which shows that maximizing the entropy is essentially equivalent to max-
imizing the number of possible realizations N!/

∏
s ns ! when the tosses are

independent [282]. In this sense, the MaxEnt solution is the one that can be
realized in the largest number of ways. Such an argument, however, is based
only on the number of realizations and does not take into account their rela-
tive probabilities. We now address these three criticisms.

Bayesian Derivation

The main problem with the standard derivation is that the probabilistic model
is not really explicit. In particular, the likelihood function P(D|ps) is not
clearly defined and little progress can be made in this direction without con-
sidering actual runs of the system. Thus we must enlarge the initial setup by
assuming that there is a fixed number N that is very large and that the sys-
tem is observed over such a period. Variable observation times could also be
considered but would further complicate the analysis. Accordingly, we decide
to parameterize the model using the counts ns . Note also that what is really
observed is D = (∑s nsf(s))/N �=

∑
s psf(s).

Several priors on the counts ns are possible. As we have seen, a natural
prior would be to use a Dirichlet prior on ns/N. A nonsymmetric Dirichlet
prior could easily incorporate any additional information regarding the fre-
quency of occurrence of any particular state. We leave it as an exercise for the
reader to calculate the posterior obtained with a Dirichlet prior, but this is ob-
viously not the Boltzmann-Gibbs solution. For instance, if the prior is uniform
and f(s1) = D, then the vector (N,0, . . . ,0), with the lowest possible entropy,
maximizes the probability of the data by rendering it certain! Here we rather
decide to use the entropic prior, which is the distribution on ns obtained when
P is uniform. Again, such a prior is best justified when the runs are indepen-
dent, that is, the underlying probabilistic model is a simple die with |S| faces.
Although in what follows we confine ourselves to this zeroth-order Markov
model, one could consider higher-order Markov models. A Markov model of
order 1, for instance, would include a different set of parameters associated
with the transition probabilities from state to state, equivalent to |S| dice. Cer-
tain aspects of Markov models of order 1 and Boltzmann-Gibbs distributions
are treated in chapter 4.

The likelihood function is then trivial and has value 1 or 0, depending on
whether or not D =∑s f (s)ns/N. We can finally proceed with the first step of
Bayesian inference, and estimate the parameters ns by MAP estimation. Using
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the formalism introduced earlier this leads immediately to the Lagrangian

L = −
∑
s

ns
N

log
ns
N
− λ(

∑
s
(f(s)

ns
N
−D)− µ(

∑
s
ns −N), (3.22)

where the entropy act as a regularizer. This is of course virtually identical
to (3.19) and yields a MAP Boltzmann-Gibbs distribution for ns/N. A similar
result can be derived using the parameters ps instead of ns , but in a more
cumbersome way in terms of both justifying the entropic prior and calculating
the likelihood function, since different values of ns can be consistent with D.

In conclusion, the Boltzmann-Gibbs distribution corresponds to a first step
of Bayesian inference by MAP, with an entropic prior. Therefore MaxEnt is
best viewed not as an universal principle but simply as a shortcut for the first
level of Bayesian inference in a multinomial setting associated with an entropic
prior. Such prior can be challenged and examples can be constructed where
MaxEnt leads to the “wrong” solution. We leave it as an exercise for the reader
to construct such examples and envision how to proceed again with higher
steps of Bayesian inference (hyperparameters, integration over priors).

3.2.2 Thermodynamic Limit and Phase Transitions

The temperature is a good example of an intensive quantity, that is, a quantity
that by definition is independent of system size. On the other hand, extensive
quantities, such as the energy, grow with the size of the system. For large
systems with local interactions, this growth is typically linear with the size of
the system. Thus the value of an extensive quantity per unit of volume tends
to a limiting value as the size of the system goes to infinity, the so-called
thermodynamic limit.

One of the main goals of statistical mechanics is to estimate the thermo-
dynamic limit of macroscopic quantities, that is, to approximate expectations
with respect to the Boltzmann-Gibbs distribution. In particular, one of the
main goals is to approximate the partition function Z(λ), since this function
contains most of the relevant information about the system. In particular, it
is easy to show that all the moments of the function f can be computed from
Z(λ), and more precisely from its logarithm. For instance, for the first two
moments, the mean and the variance, an elementary calculation gives

E(f) = − ∂
∂λ

logZ(λ) (3.23)

Var(f) = − ∂2

∂λ2 logZ(λ). (3.24)
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Likewise, the entropy of the Boltzmann-Gibbs distribution P∗ can be expressed
as

H (P∗) = −
∑
s
P∗(s) log P∗(s) = logZ(λ)+ λE(f). (3.25)

Another central topic of statistical mechanics is the study of phase tran-
sitions, that is abrupt changes in the behavior of the system as some of the
parameters, especially the temperature T or equivalently λ, are varied. A first-
order phase transition is said to occur at a critical value λC if E(f) is discontin-
uous at λC . A second-order phase transition occurs at λC if E(f) is continuous
but Var (f) is discontinuous. The study of phase transitions is also important
in learning theory [252, 482], but this is beyond the scope of this book.

3.2.3 The Free Energy

The logarithm of the partition function is called the free energy because of its
important role (see (3.23), (3.24), and (3.25)). More precisely, the free energy
F = F(f , λ) = F(λ) is defined to be

F(λ) = −1
λ

logZ(λ). (3.26)

The above formula can obviously be rewritten in terms of the free energy. For
instance,

H (P∗) = −λF(λ)+ λE(f). (3.27)

This is equivalent to

F(λ) = E(f)− 1
λ
H (P∗), (3.28)

which is sometimes used as an alternative definition of the free energy. In this
definition, the free energy depends on the function f , the parameter λ, and
the distribution P∗ over states. The definition therefore can be extended to
any other distribution Q(s):

F(f ,Q,λ) = F(Q,λ) = EQ(f) − 1
λ
H (Q), (3.29)

where EQ denotes expectations with respect to the distribution Q. Here we
drop the dependency on f , but the choice of f as a negative log-probability
is important in statistical applications, such as the derivation of the EM algo-
rithm, as described below and in chapter 4. By comparing this free energy with
the Lagrangian above, it is also clear that the Boltzmann-Gibbs distribution is
equivalently characterized as the distribution that minimizes the free energy.
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Consider now any two distributions Q(s) and R(s). We want to be able to
compare their free energies. A simple calculation gives

F(Q,λ)−F(R, λ) =
∑
s
[Q(s) −R(s)][f(s) + 1

λ
logR(s)] + 1

λ
H (Q,R), (3.30)

where H (Q,R) = ∑
s Q(s) log(Q(s)/R(s)) is the relative entropy between Q

and R.
It is useful to remark that if we take the energy of s to be the negative

likelihood f(s) = − logR(s), where R is some distribution over the states, then
the Boltzmann-Gibbs distribution is proportional to Rλ(s). In particular, at
λ = 1 the Boltzmann-Gibbs distribution of the system is R itself: P∗(s,1) = R,
and the free energy reduces to 0. Furthermore, for any other distribution Q,
the difference in free energies is then equal to the relative entropy

F(Q,1) −F(R,1) =H (Q,R). (3.31)

Since the relative entropy is always nonnegative, then F(Q,1) ≥ F(R,1),
with equality if and only if Q = R. Again the Boltzmann-Gibbs distribution
minimizes the free energy. It is also important to note that there is noth-
ing special about the λ = 1 temperature. We could, for instance, define
f(s) = − logR(s)/λ, and then obtain F(Q,λ) −F(R, λ) =H (Q,R)/λ.

3.2.4 The Hidden Variables Case

In many modeling situations there are hidden/unobserved/latent variables or
causes denoted by H. If D denotes the data, we assume that there is available
a joint distribution on the hidden and observed variables P(D,H|w), parame-
terized by w. In the case of interest to us, w as usual denotes the parameters
of a model. From a statistical mechanics perspective, we can consider that the
states of the system are the values assumed by the hidden variables. If we
define f by

f(H) = − log P(D,H|w), (3.32)

then at λ = 1 the Boltzmann-Gibbs distribution is given by the posterior

P∗ = P∗(H,1) = P(H|D,w) (3.33)

and the free energy by

F(P∗,1) = − log P(D|w), (3.34)

which is the negative log-likelihood of the data. Furthermore, for any other
distribution Q, the difference in free energies is given by

F(Q,1) −F(P∗,1) =H (Q, P∗) (3.35)
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or
log P(D|w) = −F(Q,1) +H (Q, P∗). (3.36)

In order to maximize the data likelihood, when the posterior P(H|D,w) and
the corresponding expectations are difficult to calculate, one can sometimes
use a suboptimal strategy based on a different family of distributions Q for
which calculations are more tractable, without departing too much from the
true posterior. This idea of minimizing the free energy term F(Q,λ) is de-
veloped in [146, 255] and in the section on variational methods in appendix
A.
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Chapter 4

Machine Learning Algorithms

4.1 Introduction

In this chapter we cover the main algorithms for machine-learning applications
that will be used thoughout the rest of the book. We briefly describe each of
the algorithms and provide pointers to the vast literature on this topic.

Once a parameterized model M(w) for the data has been constructed, we
have seen that the next steps are the following:

1. The estimation of the complete distribution P(w,D) and the posterior
P(w|D)

2. The estimation of the optimal set of parameters w by maximizing
P(w|D), the first level of Bayesian inference

3. The estimation of marginals and expectations with respect to the
posterior, that is, for instance, of integrals of the form E(f) =∫
f(w)P(w|D)dw, the higher levels of Bayesian inference

Thus the algorithms can be subdivided into three categories, depending on
whether the goal is to estimate a probability density, one of its modes, or the
corresponding expectations. For practical reasons we shall use this distinction,
although it is somewhat arbitrary. Indeed, any problem can be reformulated
as an optimization problem, and the probability of an event is the expectation
of the corresponding indicator function: P(A) = E(1A). Likewise, dynamic
programming, which is often used to estimate sequence data likelihoods, can
be viewed as an optimization technique.

In section 4.2, we briefly review dynamic programming, one of the key al-
gorithms in sequence analysis, and its application in the estimations of se-
quence likelihoods. In the following two sections we look at algorithms for

81
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the optimization of P(w|D), including gradient descent and EM (expectation
maximization)/GEM (generalized expectation maximization). The treatment of
simulated annealing is postponed to section 4.6, after the treatment in section
4.5 of Monte Carlo Markov chain methods (MCMC) for the stochastic sampling
of high-dimensional distributions and the computation of the corresponding
expectations. This is because simulated annealing relies heavily on stochastic
sampling. In section 4.7 we take a brief look at evolutionary algorithms, and
conclude in section 4.8 with several complements and practical aspects.

4.2 Dynamic Programming

Dynamic programming [66] is to a very general optimization technique that
can be applied any time a problem can be recursively subdivided into two sim-
ilar subproblems of smaller size, such that the solution to the larger problem
can be obtained by piecing together the solutions to the two subproblems. The
prototypical problem to which dynamic programming can be applied is that of
finding the shortest path between two nodes in a graph. Clearly the shortest
path from node A to node B, going through node C , is the concatenation of
the shortest path from A to C with the shortest path from C to B. This is also
called the “Bellman principle.” A general solution to the original problem is
then constructed by recursively piecing together shorter optimal paths.

Dynamic programming and its many variations are ubiquitous in sequence
analysis. The Needleman–Wunch and Smith–Waterman algorithms [401, 481,
492], as well as all other sequence-alignment algorithms such as the Viterbi
decoding algorithm of electrical engineers, are examples of dynamic program-
ming. Alignment algorithms can be visualized in terms of finding the shortest
path in the appropriate graph with the appropriate metric. Aligning two se-
quences of length of N requires finding a shortest path in a graph with N2

vertices. Since dynamic programming essentially requires visiting all such ver-
tices once, it is easy to see that its time complexity scales as O(N2).

In chapters 7 and 8, dynamic programming and the Viterbi algorithm are
heavily used to compute likelihoods and align sequences to HMMs during the
training and exploitation phases. Accordingly, we give there a detailed deriva-
tion of the corresponding algorithms. Other variations on dynamic program-
ming used in other chapters are sketched or left as an exercise. Because dy-
namic programming is very well known and is at the root of many conventional
algorithms for sequence analysis, we refer the reader to the abundant litera-
ture on the topic (in particular [550] and references therein). Reinforcement-
learning algorithms are also another important class of learning algorithms
that can be viewed as generalizations of dynamic programming ideas [298].
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4.3 Gradient Descent

Often we are interested in parameter estimation, that is, in finding the best
possible model M(w) that minimizes the posterior f(w) = − log P(w|D), or
possibly the likelihood − log P(D|w). Whenever a function f(w) is differen-
tiable, one can try to find its minima by using one of the oldest optimization
algorithms, gradient descent. As its name indicates, gradient descent is an
iterative procedure that can be expressed vectorially as

wt+1 =wt − η ∂f
∂wt , (4.1)

where η is the step size, or learning rate, which can be fixed or adjusted during
the learning process.

While the general gradient-descent principle is simple, in complex param-
eterized models it can give rise to different implementations, depending on
how the gradient is actually computed [26]. In graphical models, this often
requires the propagation of information “backwards.” As we will see in the
next chapters, this is the case for gradient-descent learning applied to neural
networks (the backpropagation algorithm) and to hidden Markov models (the
forward–backward procedure). Obviously the outcome of a gradient-descent
procedure depends on the initial estimate. Furthermore, if the function being
optimized has a complex landscape, gradient descent in general will terminate
in a local minimum rather than a global one. Whenever feasible, therefore, it
is wise to run the procedure several times, with different starting points and
learning rates.

It is well known that there are situations where plain gradient descent can
be slow and inefficient. To overcome such problems, a number of variations
on gradient descent are possible, such as conjugate gradient descent, that use
second-order information or more complex directions of descent constructed
from the current gradient and the history of previous directions. Additional
details and references can be found in [434]. In spite of its relative crudeness,
gradient descent remains useful, easy to implement, and widely used.

4.3.1 Random-Direction Descent

There are a number of other descent procedures that do not necessarily fol-
low the line of steepest descent. These can be useful when the gradient is
difficult to compute, when the physics of the hardware directly supports such
approaches, or when escaping from local minima is important. For instance,
one could generate a random perturbation of the current estimate and accept
it only if it lies below the current level. If it does not, the opposite pertur-
bation is accepted, or alternatively a new perturbation is tried. In line search



84 Machine Learning Algorithms

A

B

C

ww  t   t+1

Figure 4.1: Three Consecutive Points of the EM Algorithm. Starting from wt , in order to mini-
mize the likelihood surface F(w) = − log P(D|w), the EM algorithm minimizes a surface G(w),
with G(wt) = F(wt) = A. The surface G dominates the surface F , and the two surfaces have
the same gradient at w = wt. wt+1 corresponds to point B, the minimum of G. Point C is
determined by calculating the new posterior on the hidden variables P(H|D,wt+1).

algorithms, once a direction of descent has been determined, the lowest point
along that direction is searched before generating a new direction. Ideas re-
lated to line search and random descent are also found in the EM algorithm in
the next section, and in evolutionary algorithms toward the end of the chapter.

4.4 EM/GEM Algorithms

Another important class of optimization algorithms is the expectation max-
imization (EM) and generalized expectation maximization (GEM) algorithms
[147, 387]. Such algorithms have been used in many different applications and
also in sequence analysis [352, 113]. In the case of HMMs, the EM algorithm
is also called the Baum–Welch algorithm [54]. Since the usefulness of these
algorithms goes beyond HMMs, we give here a general treatment of EM/GEM
algorithms, using the concept of free energy of chapter 3, along the lines sug-
gested in [400].

The EM algorithm is useful in models and situations with hidden variables.
Typical examples of hidden variables are missing or unobservable data, mix-
ture parameters in a mixture model, and hidden node states in graphical mod-
els (hidden units in NNs, hidden states in HMMs). If D denotes the data, we
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assume that there is available a parameterized joint distribution on the hidden
and observed variables P(D,H|w), parameterized by w. In the case of main
interest to us, w denotes, as usual, the parameters of a model. Let us assume
that the objective is to maximize the likelihood log P(D|w). The same ideas
can easily be extended to the case of MAP estimation. Since in general it is
difficult to optimize log P(D|w) directly, the basic idea is to try to optimize
the expectation E(log P(D|w)):

E(log P(D|w)) = E(log P(D,H|w) − log P(H|D,w)). (4.2)

The EM algorithm is an iterative algorithm that proceeds in two alternating
steps, the E (expectation) step and the M (maximization) step. During the E
step, the distribution of the hidden variables is computed, given the observed
data and the current estimate of w. During the M step, the parameters are
updated to their best possible value, given the presumed distribution on the
hidden variables. Starting with an estimate w0 at time 0, the EM algorithm can
be written more precisely at time t as follows:

1. E step: Compute the distribution Q∗(H) over H such that Q∗(H) =
P(H|D,wt−1).

2. M step: Set wt = argw max EQ∗[log P(D,H|w)].

As seen in chapter 3, if we define the energy of a hidden configuration H
to be f(H) = − log P(D,H|w), then the Boltzmann–Gibbs distribution at λ = 1
is given by the posterior P(H|D,w). In other words, the first step of the EM
algorithm is the minimization, with respect to Q, of the free energy

F(f ,Q,1) = F(w,Q,1) = F(w,Q) = EQ(f)−H (Q). (4.3)

The second step is a minimization with respect to f , that is, with respect to
w. Thus, omitting the constant parameter λ = 1, the EM algorithm can be
rephrased in the following form:

1. E step: Compute the Boltzmann–Gibbs distribution Q∗(H) that mini-
mizes F(wt−1,Q).

2. M step: Set wt to minimize F(wt−1,Q∗).

It is important to note that although Q∗ depends on w, Q∗ is held fixed dur-
ing the M step. Also from chapter 3, the value of the free energy for the
Boltzmann–Gibbs distribution is equal to the negative log-likelihood of the
data, F(w,Q∗,1) = − log P(D|w).
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In summary, the EM algorithm is an optimization procedure on the free
energy F that proceeds by alternate optimization in the Q and w directions.
Hence it produces a sequence of estimates of the form

(wt,Qt)→ (wt,Qt+1)→ (wt+1,Qt+1)→ (wt+1,Qt+2) . . . , (4.4)

satisfying, for every t

1. F(wt,Qt) ≥ F(wt,Qt+1) ≥ F(wt+1,Qt+1) ≥ F(wt+1,Qt+2) ≥ . . .
2. F(wt,Qt+1) = − log P(D|wt)

3. Qt+1 = P(H|D,wt) and F(wt,Qt)−F(wt,Qt+1) =H (Qt ,Qt+1)

It is then clear that, except for rare saddle points, the EM algorithm converges
to a local minimum of F(w,Q) which is also a local minimum of− log P(D|M),
as desired.

It is instructive to look at the EM algorithm from the point of view ofw only.
Suppose we have an estimate wt at time t, with the corresponding likelihood
− log P(D|wt). Then

wt+1 = argw min[−EQt+1 log P(H,D|w)] (4.5)

with Qt+1 = P(H|D,wt). By writing P(H,D|w) = P(H|D,w)P(D|w) and col-
lecting terms, this is equivalent to

wt+1 = argw min[− log P(D|w)+H (Qt+1,P(H|D,w))]. (4.6)

Thus, starting from wt , the EM algorithm finds the minimum of the sur-
face G(w) = − log P(D|w) +H (Qt+1,P(H|D,w)) that dominates the surface
F(w) = − log P(D|w) that one really wants to optimize. Thus the optimiza-
tion procedure tends to maximize the likelihood, without going too far from
the current value of P(H|D,wt), to keep the cross-entropy term small. Taking
derivatives vectorially yields

∂G
∂w

= −∂ log P(D|w)
∂w

−
∑
H
Qt+1(H)

∂P(H|D,w)/∂w
P(H|D,w) . (4.7)

The second term in the right-hand side cancels when w =wt . Therefore,

∂G
∂w

|w=wt = −∂ log P(D|w)
w

|w=wt . (4.8)

The tangent to the new surface G is identical to the tangent to the original
surface F(w) = − log P(D|w). Thus gradient descents on the negative log-
likelihood and the EM algorithm are descending in the same directions (figure
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4.1). The EM algorithm is further simplified when the distribution P(D,H|w)
belongs to the exponential family. In particular, in this case, the function G
is always convex. The particularization of the EM algorithm to exponential
distributions is left as an exercise.

Finally, any algorithm that descends the function G (without necessarily
finding its minimum), and hence improves the likelihood, is called a GEM (gen-
eralized EM) algorithm [147]. The geometric picture above shows that gradient
descent on the likelihood can be viewed as a GEM algorithm (see also [400] for
a discussion of how the E and M steps can be executed partially, for instance,
online).

4.5 Markov-Chain Monte-Carlo Methods

Markov-chain Monte-Carlo (MCMC) methods belong to an important class of
stochastic methods that are related to statistical physics and are increasingly
used in Bayesian inference and machine learning [578, 202, 396, 520, 69]. Re-
call that one of the basic goals derived from the general Bayesian framework
is to compute expectations with respect to a high-dimensional probability dis-
tribution P(x1, . . . , xn), where the xi can be the values of model parameters or
hidden variables, as well as observed data. The two basic ideas behind MCMC
are very simple. The first idea (Monte Carlo) is to approximate such expecta-
tions by

E(f) =
∑

x1,...,xn
f(x1, . . . , xn)P(x1, . . . , xn) ≈ 1

T

T∑
t=0

f(xt1, . . . , x
t
n) (4.9)

for large T , provided (xt1, . . . , xtn) are sampled according to their distribution
P(x1, . . . , xn). In order to sample from P , the second basic idea is to construct
a Markov chain having P as its equilibrium distribution, then simulate the
chain and try to sample from its equilibrium distribution.

Before we proceed with the rudiments of Markov chains, it is worth noting
a few points. The mean of the estimator on the right-hand side of (4.9) is E(f).
If the samples are independent, its variance is Var(f)/T . In this case, the
precision of the estimate does not depend on the dimension of the space be-
ing sampled. Importance sampling and rejection sampling are two well-known
Monte-Carlo algorithms for generating independent samples that will not be
reviewed here. Both algorithms tend to be inefficient in high-dimensional state
spaces. The samples created using Markov-chain methods are not indepen-
dent. But at equilibrium they are still representative of P . The dependence of
one sample on the previous one is the key to the better efficiency of MCMC
methods with higher-dimensional spaces. After all, if P is differentiable or
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even just continuous, the probability P(x1, . . . , xn) of a sample provides in-
formation about its neighborhood. This remains true even in cases where P
can be computed efficiently only up to a constant normalizing factor. Finally,
MCMC methods, like any other method based on a single estimator, are at best
an approximation to the ideal Bayesian inference process that would rely on
the calculation of P(E(f)|D) given any sample D.

4.5.1 Markov Chains

The theory of Markov chains is well established [176]. Here we review only the
most basic concepts and refer the reader to the textbook literature for more
information. As in statistical mechanics, consider a system S = {s1 , s2, . . . , s|S|}
with |S| states. Let S0, S1, . . . , St, . . . be the sequence of variables representing
the state of the system at each time. Thus each integer from 1 to |S| is associ-
ated with one state of the chain, and at any time the chain is in one particular
state. The variables St form a Markov chain if and only if for any t

P(St+1|S0, .., St) = P(St+1|St). (4.10)

Intuitively, this can be rephrased by saying that the future depends on the
past only through the present. St is called the state of the chain at time t.
A Markov chain is entirely defined by the initial distribution P(S0) and the
transition probabilities Pt = P(St+1|St). Here we will be concerned only with
stationary Markov chains, where the transition probabilities are constant, that
is, independent of time. The transition matrix of the chain is then the matrix
T = (tij), where tij is the probability of moving from state sj to state si.
Note that, in relation to (4.9), the state space of the chain is defined by the
coordinates x1, . . . , xn; that is, each St is an n-dimensional variable.

A distribution over the state space of the chain is said to be stable if, once
reached, it persists forever. Thus a stable distribution Q must satisfy the
balance equation

Q(si) =
|S|∑
k=1

tikQ(sk) = (1−
∑
j �=i
tji)Q(si)+

∑
j �=i
tijQ(sj) (4.11)

or equivalently
−
∑
j �=i
tjiQ(si)+

∑
j �=i
tijQ(sj ) = 0. (4.12)

Thus, a sufficient condition for stability is the pairwise balance equation

tjiQ(si) = tijQ(sj ) (4.13)
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for every i and j. This expresses the fact that the average number of transi-
tions from si to sj is equal to the average number of transitions from sj to si,
and therefore the overall distribution over states is preserved.

A Markov chain can in general have several stable distributions. Markov
chains with finite state space always have at least one stable distribution. Ob-
viously, in MCMC sampling procedures, we will be interested in stable distri-
butions, in fact in the even stronger conditions of ergodic distributions. Here,
a distribution is defined to be ergodic if and only if the chain always converges
to it, regardless of the choice of the initial distribution at time 0. In the case
of an ergodic Markov chain, there is only one stable distribution, called the
equilibrium distribution. Conditions for the ergodicity of a Markov chain, and
bounds on the rate of convergence to the equilibrium distribution, are well
known [150, 180].

In order to achieve our goal of sampling from P(x1, . . . , xn), we now turn to
the two main MCMC algorithms: Gibbs sampling and the Metropolis algorithm.

4.5.2 Gibbs Sampling

Gibbs sampling, also known as the heatbath method, is the simplest MCMC
algorithm [199]. It can be applied to a wide range of situations, especially
when the conditional distributions P(xi|xj : j �= i) can be computed easily, or
when the variables Xi take on values from a small set. In Gibbs sampling, one
iteratively samples each single variable, conditioned on the most recent value
of all the other variables. Starting from (xt1, . . . , xtn),

1. Select xt+1
1 according to P(X1|xt2, xt3, . . . , xtn).

2. Select xt+1
2 according to P(X2|xt+1

1 , xt2, . . . , xtn).

3. . . . .

n. Select xt+1
n according to P(Xn|xt+1

1 , xt+1
2 , . . . , xt+1

n−1).

In this version, we cycle through the variables sequentially. It is also possible
to cycle through the variables in any order, or to uniformly select the vari-
ables at each step. One can even use any other fixed distribution, as long as
each variable has a nonzero probability of being visited. It is also possible to
sample variables by groups rather than one by one. By applying the defini-
tion, it is trivial to check that the Gibbs sampling algorithm leads to a stable
distribution. Proofs of ergodicity and further information can be found in the
general references on MCMC methods given above and in [209, 191, 490]. An
example of specific Gibbs sampling equations for Bayesian networks is given in
appendix C. We now turn to another MCMC method, the Metropolis algorithm,
of which Gibbs sampling is a special case.
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4.5.3 Metropolis Algorithm

Again let us suppose that the goal is to sample from a given distribution
P(s) = P(x1, . . . , xn). The Metropolis algorithm [388] randomly generates per-
turbations of the current state, and accepts or rejects them depending on how
the probability of the state is affected.

More precisely, the Metropolis algorithm is defined using two auxiliary fam-
ilies of distributions Q and R. Q = (qij) is the selection distribution; qij is the
probability of selecting state si while being in state sj . R = (rij) is the ac-
ceptance distribution; rij is the probability of accepting state si while being in
state sj and having selected si as a possible next state. Obviously, we must
have qij ≥ 0 and rij ≥ 0, and

∑
i qij = 1. For the time being, and in most prac-

tical cases, one can assume that Q is symmetric, qij = qji, but this hypothesis
can also be relaxed. Starting from a state sj at time t (St = sj ), the algorithm
proceeds as follows:

1. Randomly select a state si according to the distribution qij .

2. Accept si with probability rij . That is, St+1 = si with probability rij and
St+1 = sj with probability 1− rij .

In the most common version of the Metropolis algorithm, the acceptance dis-
tribution is defined by

rij =min

(
1,
P(si)
P(sj)

)
. (4.14)

We leave it as an exercise to show that Gibbs sampling can be rewritten as
a Metropolis algorithm. When P is expressed in terms of an energy function
P(s) = e−E(s)/kT /Z, this can be rewritten as

rij =min(1, e−[E(si)−E(sj )]/kT ) =min(1, e−∆ijE/kT ). (4.15)

Note that only the ratio of the probabilities is needed, not the partition func-
tion. As a result, the algorithm can be expressed in its most familiar form:

1. Randomly select a state si according to the distribution qij .

2. If E(si) ≤ E(sj) accept si. If E(si) > E(sj), accept si only with probability
e−∆ijE/kT . If si is rejected, stay in sj .

It is easy to see that the distribution P is stable under the Metropolis algo-
rithm. We have tij = qijP(si)/P(sj) and tji = qji. Since Q is symmetric, this
immediately gives

P(sj)tij = P(si)tji. (4.16)

In other words, since the pairwise balance equations are satisfied, P is stable.



Simulated Annealing 91

To ensure ergodicity, it is necessary and sufficient to ensure that there are
no absorbing states in the chain, or equivalently that there is always a path
of transitions with nonzero probability from any si to any sj . This of course
depends on the structure of qij . Several general remarks can be made. We
can construct a graph G by connecting two points i and j with an edge if and
only if qij > 0. If the resulting graph is complete (or even just very dense),
the chain is clearly ergodic. This type of Metropolis algorithm can be termed
“global” because there is a nonzero probability of moving from any state i to
any state j in one step, or at most very few steps, if the graph is dense but not
complete. When the graph is more sparse, one obtains more “local” versions of
the Metropolis algorithm. Ergodicity is still preserved, provided any two points
are connected by at least one path. An example of this situation is when the
algorithm is applied componentwise, perturbing one component at a time. In
most practical applications, the selection probability qji is chosen uniformly
over the neighbors j of vertex i. Usually, qii is also chosen to be 0, although
this does not really impact any of the results just described.

Finally, there are several variations and generalizations of the Metropolis
algorithm using, for instance, the derivatives of the energy function, other ac-
ceptance functions [242, 396], and cluster Monte Carlo algorithms [510, 547].
In particular, it is even possible to remove the condition that Q be symmetric,
as long as the balance is preserved by modifying the acceptance function R
accordingly:

rij = min

(
1,
P(si)qij
P(sj)qji

)
. (4.17)

4.6 Simulated Annealing

Simulated annealing [321] (see also [67] for a review) is a general-purpose opti-
mization algorithm inspired by statistical mechanics. It combines MCMC ideas
such as the Metropolis algorithm with a schedule for lowering the temperature.
The name has its origin in metallurgy, where metals that have been annealed
(cooled slowly) exhibit strength properties superior to metals that have been
quenched (cooled rapidly). The greater macroscopic strength is associated
with internal molecular states of lower energy.

Consider the problem of minimizing a function f(x1, . . . , xn). Without
any loss of generality, we can assume that f ≥ 0 everywhere. As usual,
we can regard f as representing the energy of a statistical mechanical sys-
tem with states s = (x1, . . . , xn). We have seen that the probability of be-
ing in state s at temperature T is given by the Boltzmann–Gibbs distribution
P(s) = P(x1, . . . , xn) = e−f(s)/kT /Z. The first key observation in order to
understand simulated annealing is that at low temperatures, the Boltzmann–
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Gibbs distribution is dominated by the states of lowest energy, which become
the most probable. In fact, if there are m states where the minimum of the
function f is achieved, we have

lim
T→0

P(s) =
{

1/m if s is a ground state
0 otherwise.

(4.18)

If we could simulate the system at temperatures near 0, we would immediately
have the ground states, that is, the minima of f . The catch is that any MCMC
method fails in general to reach the Boltzmann–Gibbs equilibrium distribution
in a reasonable time, because movement in state space is inhibited by regions
of very low probability, that is, by high energy barriers. Simulated annealing
attempts to overcome this problem by starting with a high temperature, where
the Boltzmann–Gibbs distribution is close to uniform, and progressively low-
ering it according to some annealing schedule. While simulated annealing is
usually used in combination with the Metropolis algorithm, it is in fact appli-
cable to any MCMC method, and in particular to Gibbs sampling.

The annealing schedule of course plays a crucial role. There are a number
of theoretical results [199] showing that for a logarithmic annealing schedule
of the form

T t = K
log t

(4.19)

(t ≥ 1), the algorithm converges almost surely to one of the ground states, for
some value of the constant K (see [230] for a lower bound on K). (From the
context, no confusion should arise between T the temperature and T the time
horizon.) Intuitively, this is easy to see [396]. If we let smax and smin denote
two states with maximal and minimal energy, then from the Boltzmann–Gibbs
distribution we have,

Pt(smax)
P t(smin)

=
(

1
t

)∆E/kK
, (4.20)

where ∆E = E(smax)−E(smin). If we take K = ∆E/k, we then have Pt(smax) =
Pt(smin)/t. Therefore, for any state s,

Pt(s) ≥ Pt(smax) = 1
t
P t(smin) ≥ 1

t
P1(smin). (4.21)

In particular, the number of times any state s is visited during the annealing
is lower-bounded by P1(smin)

∑
t 1/t, which is divergent. Thus, with K scaled

with respect to the highest energy barrier, it is impossible for the algorithm to
remain trapped in a bad local minimum.

It must be noted, however, that a logarithmic annealing schedule is very
slow and generally impractical. A logarithmic schedule suggests that a signifi-
cant fraction of all possible states is visited, and therefore is essentially equiv-
alent to an exhaustive search. Thus it is not surprising that it is guaranteed
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to find the global optimum. On the other hand, if an exhaustive search had
been an alternative, it would have been used in the first place. Most problems
of interest are typically NP complete, with an exponential number of possible
states ruling out any possibility of conducting exhaustive searches. In practice,
simulated annealing must be used with faster schedules, such as geometric an-
nealing schedules of the form

T t = µT t−1 (4.22)

for some 0 < µ < 1. Naturally, the best one can then hope for is to converge in
general to approximate solutions corresponding to points of low energy, but
not to the global minima.

Other interesting algorithms related to simulated annealing [547, 381] and
MCMC basic ideas, such as dynamical and hybrid Monte Carlo methods [152,
396], are discussed in the references.

4.7 Evolutionary and Genetic Algorithms

In the present context, evolutionary algorithms [261, 476] perhaps have a spe-
cial flavor since their source of inspiration, evolution, is at the heart of our
domain. Evolutionary algorithms are a broad class of optimization algorithms
that attempt to simulate in some way the inner workings of evolution, as we
(think we) understand it. One component common to all these algorithms is
the generation of random perturbations, or mutations, and the presence of a
fitness function that is used to assess the quality of a given point and filter
out mutations that are not useful. In this sense, random descent methods
and even simulated annealing can be viewed as special cases of evolutionary
algorithms. One of the broadest subclasses of evolutionary algorithms is the
genetic algorithms.

Genetic algorithms [328, 330] and the related field of artificial life push the
evolutionary analogy one step further by simulating the evolution of popula-
tions of points in fitness space. Furthermore, in addition to mutations, new
points are generated by a number of other operations mimicking genetic op-
erators and sexual reproduction, such as crossover. While genetic algorithms
are particularly flexible and make possible the evolution of complex objects,
such as computer programs, they remain quite slow even on current com-
puters, although this is of course subject to yearly improvements. Applica-
tions of genetic algorithms to problems in molecular biology can be found in
[329, 233, 415]. Other evolutionary algorithms are described in [53] and ref-
erences therein. Evolutionary algorithms will not be considered any further in
this book.
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4.8 Learning Algorithms: Miscellaneous Aspects

In connection with learning algorithms, there is a wide range of implementa-
tion details, heuristics, and tricks that have significant practical importance.
Abundant material on such tricks can be found, for instance, in the annual pro-
ceedings of NIPS (Neural Information Processing Conference). Here we cover
only a small subset of them from a general standpoint. A few model-specific
tricks are presented in the relevant chapters.

4.8.1 Control of Model Complexity

In one form or another, modelers are constantly confronted with the problem
of striking a balance between underfitting and overfitting the data, between
models that have too few and too many degrees of freedom. One approach
to this problem is to regularize the objective likelihood function with a term
that takes model complexity into account. The most principled versions of
this approach are based on equalities or bounds relating the training error ET
to the generalization error EG. These bounds typically state that with high
probability EG ≤ ET + C, where C is a term reflecting the complexity of the
model. Examples of such a formula can be found in [533], using the concept
of VC dimension, and in [5, 16], using statistical asymptotic theory. The gener-
alization error is then minimized by minimizing the regularized training error
ET +C. The term ET measures the data fit and the term C can often be viewed
as a prior favoring simpler models. Such practices can yield good results and
have heuristic value. But, as pointed out in chapter 2, from a Bayesian point
of view they also have some weaknesses. With complex data, a prior expect-
ing the data to be generated by a simple model does not make much sense.
In general, we would recommend instead using powerful flexible models, with
many degrees of freedom and strong priors on their parameters and structure,
rather than their overall complexity, to control overfitting.

4.8.2 Online/Batch Learning

Training is said to be online when some degree of model fitting or parameter
adjustment occurs as the data come in, or after the presentation of each ex-
ample. In batch or offline learning, on the other hand, parameter values are
adjusted only after the presentation of a large number of examples, if not the
entire training set. Obviously there is a spectrum of possibilities in between.
Online learning can have some advantages in that it does not require hold-
ing many training examples in memory, and it is more flexible and easier to
implement. It is also closer to the Bayesian spirit of updating one’s belief as
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data become available, and to the way biological systems seem to learn. More
important, perhaps, learning after the presentation of each example may in-
troduce a degree of stochasticity that may be useful to explore the space of
solutions and avoid certain local minima. It can also be shown, of course,
that with sufficiently small learning rates, online learning approximates batch
learning (see also [49]). Accordingly, in this book we usually provide online
learning equations.

4.8.3 Training/Test/Validation

One of the most widely used practices consists in using only a subset of the
data for model fitting and the remaining data, or portions of it, for the valida-
tion of the model. It is important to note that such a practice is not entirely
Bayesian, since in the general framework of chapter 2 all the data are used for
model fitting, without any reference or need for validation. In practice, cross-
validation techniques remain very useful because they are generally easy to
implement and yield good results, especially when data are abundant. A sec-
ond remark, of course, is that there are many ways of splitting the data into
different subsets and allocating such subsets to training or validation experi-
ments. For instance, different data sets can be used to train different experts
that are subsequently combined, or validation sets can be used to determine
the values of hyperparameters. Such matters become even more important
when data are relatively scarce. Whenever feasible, it is good to have at least
three distinct data sets: one for training, one for validation and training ad-
justments, and one for testing overall performance.

Special additional care is often required in bioinformatics because se-
quences have a high probability of being related through a common ancestor.
In chapter 1 the problem of constructing low-similarity test sets, which may be
essential to assess reliably the predictive performance of a method obtained
by machine learning, was addressed in detail.

4.8.4 Early Stopping

When a model is too flexible with respect to the available data—because it
contains too many parameters—overfitting is observed during training. This
means that while the error on the training set decreases monotonically as a
function of training epochs, the error on a validation set also decreases at
first, then reaches a minimum and begins to increase again. Overfitting is then
associated with the model’s memorizing the training data or fitting noise in
the data to a point that is deleterious for generalization. The correct approach
in such a situation of course would be to modify the model. Another widely
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used but less sound alternative is early stopping, whereby training is stopped
as soon as the error rate on the training set reaches a certain threshold, or
after a fixed number of training cycles. The threshold itself, or the number of
cycles, is not easy to determine. One possibility is to stop training as soon as
the error rate begins to increase on a validation set different from the training
set. The drawback of such an approach is that data must be sacrificed from the
training set for validation. Furthermore, this type of early stopping can still
lead to a partial overfitting of the validation data with respect to the test data.
In other words, the performance of the model on the validation set used to de-
cide when to stop is typically somewhat better than the overall generalization
performance on new data. Early stopping, like other validation methods, is,
however, easy to implement and useful in practice, especially with abundant
data.

4.8.5 Ensembles

When a complex model is fitted to the data by ML or MAP optimization, dif-
ferent model parameters are derived by varying a number of factors dur-
ing the learning procedure, such as the initial parameter values, the learn-
ing rate, the order of presentation of the examples, the training set, and so
on. Furthermore, different classes of models may be tried. It is natural to
suspect that better prediction or classification may be achieved by averag-
ing the opinion of different models or experts in some way (appendix A and
[223, 237, 277, 568, 426, 340, 339]). A pool of models for a given task is also
called an ensemble, in analogy to statistical mechanics (see also the notion
of the committee machine in the literature). Mathematically, this intuition is
based on the fact that for convex error functions, the error of the ensemble
is less than the average error of its members (Jensen’s inequality in appendix
B). Thus the ensemble performs better than a typical single expert. There are
different ways of combining the predictions produced by several models. Uni-
form averages are widely used, but other schemes are possible, with variable
weights, including the possibility of learning the weights during training. Note
that in the case of a well-defined class of models within the Bayesian frame-
work of chapter 2, the optimal prediction is obtained by integrating over all
possible models (see (2.18)). Thus averaging models can be construed as an
approximation to such an integral.

4.8.6 Balancing and Weighting Schemes

An important issue to consider is whether or not training sets are balanced.
In binomial classification problems, the number of available positive exam-
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ples can differ significantly from the number of negative examples. Likewise,
in multinomial classification problems, significant variations can exist in the
proportions in which each class is represented in the data. This situation can
be particularly severe with biological databases where, for instance, certain
organisms or certain types of sequences are overrepresented due to a large
number of different factors, as described in chapter 1.

Ideally, for the purpose of correct classification, all relevant classes should
be equally represented in the training set. In chapter 6 such balanced train-
ing strategies will be described. In some cases, underrepresentation of a cer-
tain class in the training data has led to a low test prediction performance on
that particular class. Such behavior has often been interpreted as evidence
for missing information, for example that beta-sheet prediction requires more
long-range sequence information than does helix prediction. While any protein
structure prediction method will gain from the proper addition of long-range
information, beta-sheet performance has been substantially improved just by
applying a balanced training scheme [452].

Another possibility is to use weighting schemes to artificially balance train-
ing sets, equivalent to effectively duplicating rare exemplars several times
over. A number of weighting schemes have been developed for DNA and pro-
tein sequences, especially in the context of multiple alignments [10, 536, 487,
201, 249, 337]. The weighting scheme in [337] is particularly interesting, and
optimal in a maximum entropy sense.

There is a number of other techniques that we do not cover for lack of
space. Again these can easily be found in the literature (NIPS Proceedings) and
other standard references on neural network techniques. They include:

• Active sampling.

• Pruning methods. These are methods that perform simplification of
models during or after learning. Typically, they consist of finding ways
to determine which parameters in a model have little impact on its per-
formance, and then removing them. Redundant parameters will often be
equivalent not just to those with small numerical values, but also large
weights that inhibit each other may contribute little to the quality of a
model.

• Second-order methods. These methods take advantage of second-
order information by computing or approximating the Hessian of the
likelihood—for instance, to adjust learning rates or compute error bars.
The efficient approximation of the Hessian is an interesting problem that
must be considered in the context of each model.
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Chapter 5

Neural Networks: The Theory

5.1 Introduction

Artificial neural networks (NNs) [456, 252, 70] were originally developed with
the goal of modeling information processing and learning in the brain. While
the brain metaphor remains a useful source of inspiration, it is clear today that
the artificial neurons used in most NNs are quite remote from biological neu-
rons [85]. The development of NNs, however, has led to a number of practical
applications in various fields, including computational molecular biology. NNs
have become an important tool in the arsenal of machine-learning techniques
that can be applied to sequence analysis and pattern recognition problems.

At the most basic level, NNs can be viewed as a broad class of param-
eterized graphical models consisting of networks with interconnected units
evolving in time. In this book we use only pairwise connections but, if desir-
able, one can use more elaborate connections associated with the interaction
of more than two units, leading to the “higher-order” or “sigma-pi” networks
[456]. The connection from unit j to unit i usually comes with a weight de-
noted by wij . Thus we can represent an NN with a weight-directed graph or
“architecture.” For simplicity, we do not use any self-interactions, so that we
can assume that wii = 0 for all the units.

It is customary to distinguish a number of important architectures, such as
recurrent, feed-forward, and layered. A recurrent architecture is an architec-
ture that contains directed loops. An architecture devoid of directed loops is
said to be feed-forward. Recurrent architectures are more complex with richer
dynamics and will be considered in chapter 9. An architecture is layered if
the units are partitioned into classes, also called layers, and the connectivity
patterns are defined between the classes. A feed-forward architecture is not
necessarily layered.
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Output layer

Input Layer

Hidden layers

Figure 5.1: Layered Feed-Forward Architecture or Multilayer Perceptron (MLP). Layers may con-
tain different numbers of units. Connectivity patterns between layers also may vary.

In most of this chapter and in many current applications of NNs to molecu-
lar biology, the architectures used are layered feed-forward architectures, as in
figure 5.1. The units are often partitioned into visible units and hidden units.
The visible units are those in contact with the external world, such as input
and output units. Most of the time, in simple architectures the input units
and the output units are grouped in layers, forming the input layer and the
output layer. A layer containing only hidden units is called a hidden layer. The
number of layers is often referred to as the “depth” of a network. Naturally
NNs can be assembled in modular and hierarchical fashion to create complex
overall architectures. The design of the visible part of an NN depends on the
input representation chosen to encode the sequence data and the output that
may typically represent structural or functional features.

The behavior of each unit in time can be described using either differen-
tial equations or discrete update equations (see [26] for a summary). Only the
discrete formalism will be used in this book. In a layered feed-forward ar-
chitecture, all the units in a layer are updated simultaneously, and layers are
updated sequentially in the obvious order. Sometimes it is also advantageous
to use stochastic units (see appendix C on graphical models and Bayesian net-
works). In the rest of this chapter, however, we focus on deterministic units.
Typically a unit i receives a total input xi from the units connected to it, and
then produces an output yi = fi(xi), where fi is the transfer function of the
unit. In general, all the units in the same layer have the same transfer function,
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and the total input is a weighted sum of incoming outputs from the previous
layer, so that

xi =
∑

j∈N−(i)
wijyj +wi, (5.1)

yi = fi(xi) = fi

 ∑
j∈N−(i)

wijyj +wi

 , (5.2)

where wi is called the bias, or threshold, of the unit. It can also be viewed as a
connection with weightwi to an additional unit, with constant activity clamped
to 1. The weights wij and wi are the parameters of the NNs. In more general
NNs other parameters are possible, such as time constants, gains, and delays.
In the architectures to be considered here, the total number of parameters
is determined by the number of layers, the number of units per layer, and
the connectivity between layers. A standard form for the connectivity between
layers is the “fully connected” one, where each unit in one layer is connected to
every unit in the following layer. More local connectivity patterns are obviously
more economical. Note, however, that even full connectivity between layers is
sparse, compared with complete connectivity among all units. In situations
characterized by some kind of translation invariance, it can be useful for each
unit in a given layer to perform the same operation on the activity of translated
groups of units in the preceding layer. Thus a single pattern of connections
can be shared across units in a given layer. In NN jargon this is called “weight
sharing.” It is routinely used in image-processing problems and has also been
used with some success in sequence analysis situations where distinct features
are separated by variable distances. The shared pattern of weights defines a
filter or a convolution kernel that is used to uniformly process the incoming
activity. With weight sharing, the number of free parameters associated with
two layers can be small, even if the layers are very large. An example of this
technique is given below in section 6.3 on secondary structure prediction.

There are a number of transfer functions that are widely used. Sometimes
the transfer function is linear—like the identity function, as in regression prob-
lems, in which case the unit is called a linear unit. Most of the time, however,
the transfer functions are nonlinear. Bounded activation functions are often
called squashing functions. When f is a threshold function,

f(x) =
{

1 if x > 0
0 otherwise,

(5.3)

the unit is also called a threshold gate. A threshold gate simulates a binary
decision based on the weighted “opinion” of the relevant units. Obviously,
the bias can be used to offset the location of the threshold. In this book we
use a (0,+1) formalism that is equivalent to any other scale or range, such
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as (−1,+1). Threshold gates are discontinuous. Thus they are often replaced
with sigmoidal transfer functions, which have the advantage of being continu-
ous and differentiable. In this book, we use the logistic transfer function

f(x) = σ(x) = 1
1+ e−x (5.4)

especially to estimate the probability of binary events. But other possible
sigmoidal transfer functions lead to essentially equivalent results, such as
f(x) = tanh(x) and f(x) = arctan(x). It is also possible to introduce a gain
λi for each unit by writing yi = fi(λixi). Another important type of unit in
what follows is the normalized exponential unit, also called softmax, which is
used to compute the probability of an event with n possible outcomes, such as
classification into one of n possible classes. Let the index j run over a group
of n output units, computing the n membership probabilities, and xj denote
the total input provided by the rest of the NN into each output unit. Then the
final activity yi of each output unit is given by

yi = e−xi∑n
k=1 e−xk

. (5.5)

Obviously, in this case
∑n
i=1yi = 1. When n = 2, the normalized exponential

is equivalent to a logistic function via a simple transformation

y1 = e−x1

e−x1 + e−x2
= 1

1+ e−(x2−x1)
. (5.6)

It is important to note that any probability distribution P = (pi) (1 ≤ i ≤ n)
can be represented in normalized exponential form from a set of variables xj
(1 ≤ j ≤m),

Pi = e−xi∑m
k=1 e−xk

, (5.7)

as long asm ≥ n. This can be done in infinitely many ways, by fixing a positive
constant K and letting xi = logpi + K for i = 1, . . . , n (and xj = −∞ for j > n
if needed). If m < n there is no exact solution, unless the pi assume only m
distinct values at most.

Another type of widely used functions is the radial basis functions (RBFs),
where typically f is a bell-shaped function like a Gaussian. Each RBF unit i
has a “reference” input x∗i , and f operates on the distance d(x∗i , xi) mea-
sured with respect to some metric yi = f(d(x∗i , xi)). In spatial problems, d is
usually the Euclidean distance.

Clearly a modeler should be able to choose the type of units, connectiv-
ity, and transfer functions as needed in relation to the task to be solved. As
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a result, the reader may be under the impression that the concept of NN is
somewhat fuzzy, and rightly so! According to our loose definition, one can
take the position that polynomials are NNs. Alternatively, one could of course
put further restrictions on the definition of NNs. Historically, the term NN
has been used mostly to refer to networks where the inputs satisfy (5.1) and
the transfer functions are threshold functions or sigmoids. We do not think
that much is to be gained by adopting such a dogmatic position. The current
nomenclature of model classes is in part the product of historical accidents.
The reality is that there is a continuous spectrum of possible parameterized
models without precise boundaries. A modeler should be as free as possible
in designing a model and proceeding with Bayesian inference.

In NN applications, it has been customary to distinguish between regression
and classification or recognition problems. In regression problems, the goal is
to approximate or fit a given surface. In classification or recognition problems,
the goal is to be able to classify a given input into a relatively small number of
classes. While useful, this distinction is also somewhat arbitrary since in the
limit, classification—for example, into two classes—can be viewed as fitting a
usually discontinuous binary function. The problem of learning the genetic
code (see chapter 6) is a good example of a problem at the boundary of the
two classes of problems. Classification problems have perhaps been slightly
more frequent in past applications of NNs to molecular biology, due to the
discrete nature of the sequence data and the standard problem of recognizing
particular patterns such as alpha helices, fold classes, splice sites, or exons.
But continuous data, such as hydrophobicity scales or stacking energies, can
also be important. We shall examine both regression and classification NNs
more closely in the coming sections.

One of the most important aspects of NNs is that they can learn from exam-
ples. Obviously, in the general Bayesian statistical framework this is nothing
else than model fitting and parameter estimation. Very often the data D con-
sist of input–output sample pairs D = (D1, . . . ,DK), with Di = (di, ti) (d for
data, t for target) from the regression or classification function to be approx-
imated. In practice, the data are often split into training data and validation
data in some way. The training data are used for model fitting, and the val-
idation data in model validation. The validation data can also be split into
validation and test data, where the validation set is used for early stopping
and the test data for assessing the overall performance of the model. These
model-fitting tasks, where the target values of the outputs in the fitted data are
known, are usually described in the literature as supervised learning. When the
target values are not known, the terms unsupervised or self-organization are
often used. Again, this historical distinction has its usefulness but should not
be taken too dogmatically. As for supervised learning algorithms, one of the
main practices in the past has been, starting from a random set of parameters,



104 Neural Networks: The Theory

to define an “error function” by comparing the outputs produced by the net-
work against the target outputs. Then the network parameters are optimized
by gradient descent with respect to the error function. As pointed out in chap-
ter 2, such practice is best analyzed in the general Bayesian statistical frame-
work by explicitly stating the underlying probabilistic models and assump-
tions, and proceeding with the proper Bayesian inductions. Many forms of
supervised and unsupervised learning for NNs in the literature can be viewed
as ML or MAP estimation.

In the rest of the chapter we shall focus on layered feed-forward NN ar-
chitectures, the multilayer perceptrons with inputs given by (5.1) and lin-
ear/threshold/sigmoidal/normalized exponential transfer functions, and their
application within sequence analysis. In the next section, we briefly cover the
universal approximation properties of NNs. In particular, we prove that any
reasonable function can be approximated to any precision by a shallow, and
possibly very large, NN. In section 5.3, we apply the general framework of
chapter 2 to NNs. We examine priors and likelihood functions, how to design
NN architectures, and how to carry out the first level of Bayesian inference.
In section 5.4, we apply the general framework of chapter 4 to learning al-
gorithms and derive the well-known backpropagation algorithm. Many other
theoretical results on NNs, beyond the scope of this book, can be found in
the references. Computational complexity issues for NNs and machine learn-
ing in general are reviewed in [314]. A more complete Bayesian treatment of
NNs, including higher levels of Bayesian inference, is given in [373, 398, 517].
In addition to NNs, there are a number of other flexible parameterized mod-
els for regression and classification, such as splines [546], Gaussian processes
[559, 206, 399] (appendix A), and support vector machines [533, 475].

5.2 Universal Approximation Properties

Perhaps one reassuring property of NNs is that they can approximate any rea-
sonable function to any degree of required precision. The result is trivial1 for
Boolean functions, in the sense that any Boolean function can be built using a
combination of threshold gates. This is because any Boolean function can be
synthesized using NOT and AND gates, and it is easy to see that AND and NOT
gates can be synthetized using threshold gates. For the general regression
case, it can be shown that any reasonable real function f(x) can be approxi-
mated to any degree of precision by a three-layer network with x in the input
layer, a hidden layer of sigmoidal units, and one layer of linear output units,

1This section concentrates primarily on threshold/sigmoidal units. Obviously the result is
also well known if polynomials are included among NNs.
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as long as the hidden layer can be arbitrarily large. There are a number of dif-
ferent mathematical variations and proofs of this result (see, e.g., [264, 265]).

Here we give a simple constructive proof of a special case, which can easily
be generalized, to illustrate some of the basic ideas. For simplicity, consider
a continuous function y = f(x) where both x and y are one-dimensional.
Assume without loss of generality that x varies in the interval [0,1], and that
we want to compute the value of f(x) for any x within a precision ε. Since f
is continuous over the compact interval [0,1], f is uniformly continuous and
there exists an integer n such that

|x2 − x1| ≤ 1
n
�⇒ |f(x2)− f(x1)| ≤ ε. (5.8)

Therefore it is sufficient to approximate f with a function g such that g(0) =
f(0), and g(x) = f(k/n) for any x in the interval ((k − 1)/n, k/n] and any
k = 1, . . . , n. The function g can be realized exactly by a NN with one input
unit representing x, n+1 hidden threshold gate units all receiving connections
from the input unit, and one output unit receiving a connection from each
hidden unit. The hidden units are numbered from 0 to n. The output has a
linear transfer function in order to cover the range of ys (figure 5.2). All the
weights from the input unit to the n hidden units are set to 1, and the kth
hidden unit has a threshold (bias) of (k− 1)/n. Thus, for any x in the interval
((k−1)/n, k/n], all the hidden unit activations are set to 0 except for the first
k+ 1, which take the value 1. Thus the value of the input is directly coded in
the number of hidden units that are turned on. The weight of the connection
from the kth hidden unit to the output unit is ∆kf = f(k/n)−f(k−1/n), with
∆0f = f(0). The output unit is just the identity function, with 0 bias. Thus if
x = 0, g(x) = 0. For any k = 1,2, . . . , n, if x is in the interval [(k− 1)/n, k/n],
then g(x) = f(0)+∑k

j=1 f(j/n)− f(j − 1/n) = f(k/n), as desired.
It should be clear that it is not too difficult to generalize the previous result

in several directions, to encompass the following:

1. Multidimensional inputs and outputs

2. Sigmoidal transfer functions and other types

3. Inputs on any compact set

4. Functions f that may have a finite number of discontinuities and more

While it is useful to know that any function can be approximated by an NN,
the key point is that the previous proof does not yield very economical archi-
tectures. In fact, one can show that for essentially random functions, compact
architectures do not exist. It is only for “structured” functions that compact
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Figure 5.2: Universal Approximation Architecture with One Input Unit, n+1 Hidden Threshold
Gate Units, and One Linear Output Unit Computing the Approximation g(x) to f(x).

architectures exist, and in this case the architecture constructed in the uni-
versal approximation theorems are far from optimal. Better architectures may
exist, with a better allocation of hidden units, and possibly with more than
a single hidden layer. It is for these cases that learning approaches become
important.

5.3 Priors and Likelihoods

We now apply the general theory of chapter 2. In particular, we show how
the theory can be used to determine the choice of an objective function and
of the transfer functions of the output units. In this section we shall assume
that the data consist of a set of independent input–output pairs Di = (di, ti).
The data are noisy in the sense that for a given di, different outputs ti could
be observed. Noise at the level of the input d could also be modeled, but will
not be considered here. The operation of the NN itself is considered to be
deterministic. We have

P((di, ti)|w) = P(di|w)P(ti|di,w) = P(di)P(ti|di,w), (5.9)

the last equality resulting from the fact that in general we can assume that the
inputs d are independent of the parameters w. Thus, for a given architecture
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parameterized by w, we have, using (2.9),

− log P(w|D) = −
K∑
i=1

log P(ti|di,w)−
K∑
i=1

log P(di)−log P(w)+log P(D), (5.10)

where we have used the fact that P((di, ti)|w) = P(di)P(ti|di,w), and have
taken into account the independence of the different data points. In the first
level of Bayesian inference (MAP), we want to minimize the left-hand side. We
can ignore P(D) as well as P(di), since these terms do not depend on w, and
concentrate on the prior term and the likelihood.

In order to calculate the likelihood, we shall have to distinguish different
cases, such as regression and classification, and further specify the probabilis-
tic model. In doing so, we follow the analysis in [455]. But the basic idea is to
consider that, for a given input di, the network produces an estimated output
y(di). The model is entirely defined when we specify how the observed data
ti = t(di) can statistically deviate from the network output yi = y(di). If the
output layer has many units, we need to write yij for the output of the jth
unit on the ith example. For notational convenience, in what follows we will
drop the index that refers to the input. Thus we derive online equations for
a generic input–output pair (d, t). Offline equations can easily be derived by
summing over inputs, in accordance with (5.10).

5.3.1 Priors

Unless additional information is available, the most natural and widely used
priors for NN parameters are zero-mean Gaussian priors. Hyperparameters,
such as the standard deviation of the Gaussians, can be chosen differently for
connection weights and biases and for units in different layers. If a weight w
has a Gaussian prior with standard deviation σ , the corresponding contribu-
tion to the negative log-posterior, up to constant factors, is given by w2/2σ2.
This can also be viewed as a regularization factor that penalizes large weights
often associated with overfitting. In gradient-descent learning, this adds a fac-
tor −w/σ2 to the update of w. This factor is also called weight decay. Weight
sharing is a different kind of prior obtained when different groups of units
in a given layer are assumed to have identical incoming connection weights.
Weight sharing is easily enforced during gradient-descent learning. It is use-
ful in problems characterized by some form of translational invariance where
the same operation, such as the extraction of characteristic features, needs
to be applied to different regions of the input. The pattern of shared units
essentially implements a convolution kernel, whence the name convolutional
networks.
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Gaussian and other priors for NN parameters and hyperparameters are
studied in detail in [373, 398, 517]. In [373] Laplace approximation techniques
are used to determine optimal hyperparameters. In [398] Monte Carlo meth-
ods are derived for the integration of priors and Bayesian learning in MLPs.
The advantages of Bayesian learning include the automatic determination of
regularization parameters without the need for a validation set, the avoidance
of overfitting when using large networks, and the quantification of prediction
uncertainty. In [398] it is shown that in the limit of a single hidden layer with
an infinite number of hidden units, an NN with Gaussian weight priors defines
a Gaussian process on the space of input–output functions. Hence the idea
of using Gaussian processes directly [559, 399, 206], bypassing any NN im-
plementation. While Gaussian processes provide a very flexible tool for both
regression and classification problems, they are computationally demanding
and can be applied only to moderate-size problems with currently available
technology.

5.3.2 Gaussian Regression

In the case of regression, the range of y can be arbitrary, and therefore the
simplest transfer functions in the output layer are linear (actually the identity)
functions. It is also natural to assume a Gaussian probabilistic model, that is,
P(t|d,w) = P(t|y(d),w) = P(t|y) is Gaussian, with mean vector y = y(d).
Assuming further that the covariance matrix is diagonal and that there are n
output units indexed by j, we have

P(t|d,w) =
n∏
j=1

1√
2πσj

exp(−(tj −yj)
2

2σ2
j

). (5.11)

The standard deviations σj are additional parameters of this statistical model.
If we further assume that they are constant σj = σ , then the negative log-
likelihood for the current input boils down to

E =
∑
j

(
(tj −yj)2

2σ2 − 1
2

log 2π − logσ
)
. (5.12)

Again the last two terms are independent of w, and can be ignored while
trying to estimate the optimal set of parameters w. The first term of course is
the usual least-mean-square (LMS) error, routinely used in many applications,
sometimes without explicating the underlying statistical model. The derivative
of the negative log-likelihood E with respect to an output yj is

∂E
∂yj

= ∂E
∂xj

= −tj −yj
σj

= −tj −yj
σ

, (5.13)
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the first equality resulting from the assumption that the output transfer func-
tion is the identity.

In summary, we see that in the regression case with Gaussian noise, the
output transfer function should be linear, the likelihood error function is the
LMS error function (possibly scaled by σj along each component j), and the
derivative of E with respect to the total input activity into the output layer, for
each example, has the simple expression −(tj − yj)/σj = −(tj −yj)/σ .

5.3.3 Binomial Classification

Consider now a classification problem with only two classes, A and Ā. For a
given input d, the target output t is 0 or 1. The natural probabilistic model is
a binomial model. The single output of the network then represents the prob-
ability that the input is a member of the class A or Ā, that is the expectation
of the corresponding indicator function. This can be computed by a sigmoidal
transfer function. Thus,

y = y(d) = P(d ∈ A) = P(t|d,w) = yt(1−y)(1−t) (5.14)

and
E = − log P(t|d,w) = −t logy − (1− t) log(1−y). (5.15)

This is the relative entropy between the output distribution and the observed
distribution, and

∂E
∂y

= − t −y
y(1−y). (5.16)

In particular, if the output transfer function is the logistic function, then

∂E
∂x

= −(t −y). (5.17)

Therefore, in the case of binomial classification, the output transfer func-
tion should be logistic; the likelihood error function is essentially the relative
entropy between the predicted distribution and the target distribution. The
derivative of E with respect to the total input activity into the output unit, for
each example, has the simple expression −(t −y).

5.3.4 Multinomial Classification

More generally, consider a classification task with n possible classes
A1, . . . , An. For a given input d, the target output t is a vector with a sin-
gle 1 and n− 1 zeros. The most simple probabilistic model is a multinomial
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model. The corresponding NN has n output units, each one giving the
probability of the membership of the input in the corresponding class. Thus

P(t|d,w) =
n∏
j=1

ytjj , (5.18)

with, as usual, tj = tj(d) and yj = yj(d). For each example,

E = − log P(t|d,w) = −
n∑
j=1

tj logyj. (5.19)

Again, this is the relative entropy between the output distribution and the
observed distribution, and

∂E
∂yj

= − tj
yj
. (5.20)

In particular, if the output layer consists of a set of normalized exponentials,
then for each input di,

∂E
∂xj

= −(tj −yj), (5.21)

where xj is the total input into the jth normalized exponential.
Thus, in multinomial classification, the output transfer function should

be normalized exponentials. The likelihood error function is essentially the
relative entropy between the predicted distribution and the target distribution.
The derivative of E with respect to the total input activity into the output layer,
for each example and each component, has the simple expression −(tj −yj).

5.3.5 The General Exponential Family Case

In fact, results similar to the previous cases can be derived every time the likeli-
hood function belongs to the exponential family of distributions (see appendix
A and [384, 94]). The exponential family contains many of the most common
distributions such as Gaussian, gamma, binomial, multinomial, exponential,
beta, Poisson, and negative binomial. For each member of the family, there
is an appropriate choice of output transfer function y = f(x) such that the
derivative ∂E/∂xj of E with respect to the total input activity into the jth out-
put unit has a simple expression, proportional for each example to (tj − yj),
the difference between the target output tj and the actual output yj .

We have just seen that the proper statistical framework allows one to con-
struct suitable transfer functions for the output layer, as well as suitable error
functions to measure network performance. The design of the hidden lay-
ers, however, is more problem-dependent, and cannot be dealt with in much
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Figure 5.3: Comparison of the One-Dimensional Quadratic and Cross-Entropy Error Functions,
with Respect to the Target Value of 0.5. Note the difference in ranges: the cross-entropy is
infinite for x = 0 and x = 1.

generality. The framework described above has emerged only in recent years,
and has not always been followed by NN practitioners, including many of the
examples to be examined in the next sections. Many authors have used an
LMS error function even in binomial classification problems, where a relative
entropy error is more appropriate.

The question, then, is: “How have reasonably good results been derived,
even when using a somewhat improper framework?” The answer to this ques-
tion is best understood in the simple example above. Suppose that in a binary
classification problem, the probability we wish to learn is, for the sake of ar-
gument, p = 0.5. For each x in [0,1] the LMS error is (0.5 − x)2, whereas the
relative entropy is −0.5 logx − 0.5 log(1−x). These two functions are plotted
in figure 5.3. Both functions are convex (∪), with a a minimum at p = 0.5,
as desired. The main difference, however, is in the dynamic range: unlike the
relative entropy, the LMS error is bounded. The dynamic range difference can
be important when the errors of many examples are superimposed, and also
during learning.

5.4 Learning Algorithms: Backpropagation

In the majority of applications to be reviewed, MAP or ML estimation of NN
parameters is done by gradient descent (see [26] for a general review). The
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calculations required to obtain the gradient can be organized in a nice fashion
that leverages the graphical structure of NN. Using the chain rule, weights are
updated sequentially, from the output layer back to the input layer, by prop-
agating an error signal backward along the NN connections (hence the name
“backpropagation”). More precisely, in the online version of the algorithm, and
for each training pattern, we have for any weight parameter wij

∂E
∂wij

= ∂E
∂yi

∂yi
∂wij

= ∂E
∂yi

f ′i (xi)yj. (5.22)

Thus the gradient-descent learning equation is the product of three terms,

∆wij = −η ∂E
∂wij

= −ηεiyj, (5.23)

where η is the learning rate, yj is the output of the unit from which the connec-
tion originates (also called the presynaptic activity), and εi = (∂E/∂yi)f ′i (xi)
is a postsynaptic term called the backpropagated error. The backpropagated
error can be computed recursively by

∂E
∂yi

=
∑

k∈N+(i)

∂E
∂yk

f ′k(xk)wki. (5.24)

The propagation from the children of a node to the node itself is the signature
of backpropagation. While backpropagation is the most widely used algorithm
for MAP estimation of MLPs, EM and simulated annealing have also been used.
Algorithms for learning the architecture itself can also be envisioned, but they
remain inefficient on large problems.

We can now review some of the main applications of NNs to molecular
biology. Other general surveys of the topics can be found in [432, 571, 572].



Chapter 6

Neural Networks: Applications

The application of neural network algorithms to problems within the field of
biological sequence analysis has a fairly long history, taking the age of the
whole field into consideration. In 1982 the perceptron was applied to the pre-
diction of ribosome binding sites based on amino acid sequence input [506].
Stormo and coworkers found that the perceptron algorithm was more success-
ful at finding E. coli translational initiation sites than a previously developed
set of rules [507]. A perceptron without hidden units was able to generalize
and could find translational initiation sites within sequences that were not
included in the training set.

This linear architecture is clearly insufficient for many sequence recogni-
tion tasks. The real boost in the application of neural network techniques first
came after the backpropagation training algorithm for the multilayer percep-
tron was brought into common use in 1986 [456], and especially after Qian and
Sejnowski published their seminal paper on prediction of protein secondary
structure in 1988 [437]. This and other papers that quickly followed [78, 262]
were based on an adaptation of the NetTalk multilayer perceptron architecture
[480], which from its input of letters in English text predicted the associated
phonemes needed for speech synthesis and for reading the text aloud. This
approach could immediately be adapted to tasks within the field of sequence
analysis just by changing the input alphabet into alphabets of the amino acids
or nucleotides. Likewise, the encoding of the phonemes could easily be trans-
formed into structural classes, like those commonly used for the assignment
of protein secondary structure (helices, sheets, and coil), or functional cate-
gories representing binding sites, cleavage sites, or residues being posttrans-
lationally modified.

In this chapter we review some of the early work within the application
areas of nucleic acids and proteins. We go into detail with some examples of
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more recent work where the methodologies are advanced in terms of either
the training principles applied or the network architectures, especially when
networks are combined to produce more powerful prediction schemes. We do
not aim to mention and describe the complete spectrum of applications. For
recent reviews see, for example, [432, 61, 77, 320, 571, 572].

6.1 Sequence Encoding and Output Interpretation

One important issue, before we can proceed with NN applications to molecu-
lar biology, is the encoding of the sequence input. In any type of prediction
approach, the input representation is of cardinal importance. If a very clever
input representation is chosen, one that reveals exactly the essentials for a
particular task, the problem may be more or less solved, or at least can be
solved by simple linear methods. In an MLP the activity patterns in the last
hidden layer preceding the output unit(s) should represent the transformed
input information in linearly separable form. This clearly is much easier if
the input representation has not been selected so as further to increase the
nonlinearity of the problem.

One would think that a very “realistic” encoding of the monomers in a se-
quence, using a set of physical-chemical features of potential relevance, should
always outperform a more abstract encoding taken from the principles and
practice of information theory [137]. However, in line with the contractive na-
ture of most prediction problems (see section 1.4), it does not always help just
to add extra information because the network has to discard most of it before
it reaches the output level.

During training of an MLP, the network tries to segregate the input space
into decision regions using hyperplanes. The numerical representation of the
monomers therefore has a large impact on the ease with which the hidden
units can position the planes in the space defined by the representation that
has been chosen.

In many sequence analysis problems, the input is often associated with
a window of size W covering the relevant sequence segment or segments.
Typically the window is positioned symmetrically so that the upstream and
downstream contexts are of the same size, but in some cases asymmetric win-
dows perform far better than symmetric ones. When the task is to predict
signal peptide cleavage sites (section 6.4) or intron splice sites in pre-mRNA
(section 6.5.2), asymmetric windows may outperform symmetric ones. Both
these sequence types (N-terminal protein sorting signals and noncoding in-
tronic DNA) are eventually removed, and it makes sense to have most of the
features needed for their processing in the regions themselves, leaving the
mature protein least constrained. Windows with holes where the sequence
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appears nonconsecutively have been used especially for the prediction of pro-
moters and the exact position of transcriptional initiation in DNA, but also for
finding beta-sheet partners in proteins [268, 46] and for the prediction of dis-
tance constraints between two amino acids based on the sequence context of
both residues [368, 174].

For each position in a window W , there are |A| different possible
monomers. The most used representation is the so-called orthogonal (also
called local, as opposed to distributed) encoding, where the letters X1,X2, . . .
are encoded by the orthogonal binary vectors (1,0, . . . ,0), (0,1, . . . ,0), and
so on. Such a representation has the advantage of not introducing any al-
gebraic correlations between the monomers. N- and C-terminal positions in
incomplete windows of amino acid sequences are usually encoded using a
dedicated character. Sometimes this character is also used to encode un-
known monomers in a sequence, but unknown monomers may be handled
better using just a string of zeros so that they have no impact on the input
layer.

The sparse encoding scheme has the disadvantage of being wasteful be-
cause it requires an input layer of size |A| ×W . |A| letters could in principle
be encoded using as few as log2 |A| binary units. Furthermore, using contin-
uous values in the input layer of an MLP, even a single unit could encode all
possible letters. Such a compact encoding would in almost all cases give rise
to drastically increased nonlinearity in the prediction problem at hand. If all
amino acids were encoded using values between, say, 0 and 1, many of the in-
duced correlations between the monomers would have no biological relevance,
almost no matter in what order the monomers were mapped to the interval.

Obviously, there are trade-offs between different encodings that involve the
complexity of the space in which the input windows live, the network architec-
ture size, and ease of learning. In much of the best work done so far in this
field, the orthogonal representation has been the most successful encoding
scheme. With a more complex encoding of the sequence, whether orthogonal
or not, the network must filter this extra information through a representation
as a point in a space with dimensionality according to the number of hidden
units, and then further on to a few, often a single, output unit(s). If one in-
cludes too much extra information related to the physicochemical properties
of the residues in the input layer, possibly information that is not strongly
correlated to the output, one makes the network’s task harder. In this case, it
is best to use more hidden units in order to be able to discard this extra infor-
mation and find the relevant features in a sea of noise. This situation, with the
lack of a better alternative, has contributed to the success of the orthogonal
representation.

If one wants to use real-numbered quantification of residue hydrophobic-
ity, volume, charge, and so on, one should be aware of the harmful impact it
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can have on the input space. Instead of just using a seemingly better represen-
tation of the input residues, it may be much better to use preprocessed ver-
sions of the original sequence segments. When designing such preprocessed
versions, one may exploit the statistics of certain words present in the win-
dow, the average hydrophobicity over the window or separately in the left and
right parts of a symmetric window, and so on. Another interesting possibility,
demonstrated in one of the examples below, is to let an NN learn its own rep-
resentation. In another example a binary word encoding was shown to have a
positive effect on protein secondary structure prediction [313, 548, 17]. In this
case, it was possible, from the optimal encoding scheme generated by a simu-
lated annealing approach, to discover physicochemical properties relevant to
the formation of secondary structure.

An important strategy for decreasing the nonlinearity of a prediction prob-
lem is to switch from a representation based on monomers to one based on
dimers or trimers. In the case of nucleotides, 16- and 64-letter alphabets re-
sult, and in a large number of biological recognition problems, the pair or
triplet correlations are so large that the gain in significant correlations com-
pares favorably with the negative impact of the increased dimensionality of
the input space. In DNA, base pair stacking is the most important thermo-
dynamic contribution to helical stability (more important than base pairing).
Pair correlations in RNA–RNA recognition interactions, for example, have their
physical basis in the stacking energies between adjacent base pairs [112]. In
proteins the dipeptide distribution similarly has a strong bias associated with
steric hindrance, translation kinetics, and other purely biochemical factors.

If RNA and DNA sequences are encoded by dinucleotides or trinucleotides,
there is also the possibility of letting the multimers overlap. The sparse encod-
ing of the multimers ensures that no a priori relationship is imprinted on the
sequence data. The advantage of the encoding of the sequence as overlapping
triplets is that the hidden units directly receive context information for each
single nucleotide that they otherwise would have to deduce from the training
process.

Yet another strategy for decreasing (or in some cases increasing) the non-
linearity of a prediction problem is to group monomers from one alphabet to
form new alphabets in which the pattern that should be detected will have
more contrast to the background [306]. The reduced alphabets can then be
encoded using the orthogonal vector representation, and at the same time re-
duce the dimensionality of the input space and thus the number of adjustable
parameters in the network. Meaningful groupings can be based on physic-
ochemical properties or on estimated mutation rates found in evolutionary
studies of protein families. Table 6.1 lists some of the previously used group-
ings based on ab initio descriptions of the monomers or on their structural or
functional preferences as observed in experimental data.
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Molecule Size Grouping
DNA 2 Purines vs. pyrimidines: R = A, G; Y = C, T
DNA 2 Strong vs. weak hydrogen bonding: S = C, G; W = A, T
DNA 2 Less physiochemical significance:

keto, K = T, G vs. amino, M = A, C

Protein 3 Structural alphabet:
ambivalent (Ala, Cys, Gly, Pro, Ser, Thr, Trp, Tyr)
external (Arg, Asn, Asp, Gln, Glu, His, Lys)
internal (Ile, Leu, Met, Phe, Val)

Protein 8 Chemical alphabet:
acidic (Asp, Glu)
aliphatic (Ala, Gly, Ile, Leu, Val)
amide (Asn, Gln)
aromatic (Phe, Trp, Tyr)
basic (Arg, His, Lys)
hydroxyl (Ser, Thr):
imino (Pro)
sulfur (Cys, Met)

Protein 4 Functional alphabet:
acidic and basic (same as in chemical alphabet)
hydrophobic nonpolar (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
polar uncharged (Asn, Cys, Gln, Gly, Ser, Thr, Tyr)

Protein 3 Charge alphabet:
acidic and basic (as in chemical alphabet)
neutral (all the other amino acids)

Protein 2 Hydrophobic alphabet:
hydrophobic (Ala, Ile, Leu, Met, Phe, Pro, Trp, Val)
hydrophilic
(Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Lys, Ser, Thr, Tyr)

Table 6.1: Merged Alphabets of Biomolecular Monomers. Some of these alphabets are based
on ab initio descriptions of the monomers, others are derived from statistical properties of
the monomers as indicated by structural or functional preferences. Random partition of the
amino acids into k classes that maximizes a similarity measure between sequences can also be
constructed. Source: [306]. See also references therein.

In one case, it has been shown recently that a protein can largely main-
tain its folded structure, even if the total number of different amino acids in
its composition is reduced from the conventional twenty down to five [443].
Apart from a few positions close to a binding site, fifteen amino acid types
were replaced by other residues taken from the smaller, representative group
of five (I, K, E, A, and G). Further reduction in the diversity down to three
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different amino acids did not work. This means that proteins in earlier evolu-
tionary time still may have been able to obtain stable, folded structures with
a much smaller repertoire of amino acid monomers. It should be noted that
this reduced alphabet is in no way canonical: many proteins will certainly
not be able to do without cysteines. While the recoding of sequences using
smaller alphabets (table 6.1) at first may seem purely a computational trick,
more experimental work on “essential” amino acids can possibly be exploited
in bioinformatics approaches to construct simpler sequence spaces that can
be better covered by the limited amounts of data available. The simplification
strategy arrived at here was also inspired by the phylogenetic variation in this
protein. This is exactly the type of information that has been used to improve
protein structure prediction methods, as described in the next sections of this
chapter.

In other applications the encoding does not preserve the consecutive order
of the residues in a sequence but seeks to cast the whole sequence, or large
segments of it, into global preprocessed measures that can be used as input
information in a network. For example, this is the case when the aim is to
predict the fold class or family relationship of a protein from the frequencies
of the 400 dipeptides it contains [179, 18]. In the indirect sequence encoding
used in one approach to discriminate between exons and introns, 6-mer statis-
tics, GC composition, sequence vocabulary, and several other indicators are
included as global measures in the input layer [529].

In the NN applications described below, we also show how important it is
to design good strategies for output interpretation or postprocessing. In most
cases, however, intelligent postprocessing may be as important as, or even
more important than, selecting optimal network architectures in terms of the
smallest numerical generalization error as quantified by the activities of the
output neurons. Often the number of output neurons corresponds directly
to the number of output classes, again using sparse encoding by orthogonal
vectors of zeros and ones. The output interpretation and postprocessing will
always be designed individually for each task, based on features known previ-
ously from the biological frame of reference. If it is known a priori that, say,
alpha-helices in proteins have a minimum length of four amino acids, small
“helices” that are predicted can often be removed and lead to a better over-
all predictive performance. In cases where a sequence is known to possess
a single functional site of a given type only—for example, a cleavage site in
the N-terminal signal peptide—a carefully designed principle for the numeri-
cal threshold used for assignment of sites may lead to much better recognition
of true sites and significantly lower rates of false positives. A discussion of the
relation between the analog network error and the discrete classification error
can be found in [90].
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Figure 6.1: English-Reading People Will Normally Interpret the Two Identical Symbols in this
Word Differently: the first as an h and the second as an a. In biological sequences a similar
information processing capability is needed as structural and functional features most often
result from the cooperativity of the sequence rather than from independent contributions from
individual nucleotides or amino acids. The neural network technique has the potential to detect
such short- and long-range sequence correlations, and in this way complement what can be
obtained by conventional alignment and analysis by hidden Markov models.

6.2 Sequence Correlations and Neural Networks

Many structural or functional aspects of sequences are not conserved in terms
of sequence, not even when amino acid similarities are taken into account. It
is well known that protein structures, for example, can be highly conserved
despite a very low sequence similarity when assessed and quantified by the
amino acid identity position by position. What makes up a protein structure,
either locally or globally, is the cooperativity of the sequence, and not just
independent contributions from individual positions in it.

This holds true not only for the protein as a whole but also locally, say for a
phosphorylation site motif, which must be recognized by a given kinase. Even
for linear motifs that are known to interact with the same kinase, sequence pat-
terns can be very different [331]. When the local structures of such sequence
segments are inspected (in proteins for which the structure has been deter-
mined and deposited in the Protein Data Bank), they may indeed be conserved
structurally despite the high compositional diversity [74].

The neural network technique has the potential of sensing this coopera-
tivity through its ability to correlate the different input values to each other.
In fact, the cooperativity in the weights that result from training is supposed
to mirror the relevant correlations between the monomers in the input, which
again are correlated to the prediction task carried out by the network.

The ability of the artificial neural networks to sense correlations between
individual sequence positions is very similar to the ability of the human brain
when interpreting letters in natural language differently based on their lan-
guage!naturalcontext. This is well known from pronunciation where, for ex-
ample, the four a’s in the sentence Mary had a little lamb correspond to three
different phonemes [480]. Another illustration of this kind of ability is shown
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in figure 6.1. Here the identical symbol will be interpreted differently pro-
vided the brain receiving the information that is projected onto the retina has
been trained to read the English language, that is, trained to understand the
sequential pattern in English language!Englishtext.

It is precisely this ability that has made the neural networks successful in
the sequence analysis area, in particular because they complement what one
can obtain by weight matrices and to some degree also by hidden Markov mod-
els. The power of the neural network technique is not limited to the analysis
of local correlations, as the sequence information being encoded in the in-
put layer can come from different parts of a given sequence [368]. However,
most applications have focused on local and linear sequence segments, such
as those presented in the following sections.

6.3 Prediction of Protein Secondary Structure

When one inspects graphical visualizations of protein backbones on a com-
puter screen, local folding regularities in the form of repeated structures are
immediately visible. Two such types of secondary structures, which are main-
tained by backbone hydrogen bonds, were actually suggested by theoretical
considerations before they were found in the first structures to be solved by
X-ray crystallography. There is no canonical definition of classes of secondary
structure, but Ramachandran plots representing pairs of dihedral angles for
each amino acid residue show that certain angular regions tend to be heav-
ily overrepresented in real proteins. One region corresponds to alpha-helices,
where backbone hydrogen bonds link residues i and i + 4; another, to beta-
sheets, where hydrogen bonds link two sequence segments in either a parallel
or antiparallel fashion.

The sequence preferences and correlations involved in these structures
have made secondary structure prediction one of the classic problems in com-
putational molecular biology [362, 128, 129, 196]. Many different neural net-
work architectures have been applied to this task, from early studies [437, 78,
262, 370, 323] to much more advanced approaches [453, 445].

The assignment of the secondary structure categories to the experimen-
tally determined 3D structure is nontrivial, and has in most of the work been
performed by the widely used DSSP program [297]. DSSP works by analysis of
the repetitive pattern of potential hydrogen bonds from the 3D coordinates of
the backbone atoms. An alternative to this assignment scheme is the program
STRIDE, which uses both hydrogen bond energy and backbone dihedral angles
rather than hydrogen bonds alone [192]. Yet another is the program DEFINE,
whose principal procedure uses difference distance matrices for evaluating
the match of interatomic distances in the protein to those from idealized sec-
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ondary structures [442].
None of these programs can be said to be perfect. The ability to assign

what visually appears as a helix or a sheet, in a situation where the coordinate
data have limited precision, is not a trivial algorithmic task. Another factor
contributing to the difficulty is that quantum chemistry does not deliver a nice
analytical expression for the strength of a hydrogen bond. In the prediction
context it would be ideal not to focus solely on the visual, or topological, as-
pects of the assignment problem, but also to try to produce a more predictable
assignment scheme. A reduced assignment scheme, which would leave out
some of the helices and sheets and thereby make it possible to obtain close
to perfect prediction, could be very useful, for example in tertiary structure
prediction, which often uses a predicted secondary structure as starting point.

6.3.1 Secondary Structure Prediction Using MLPs

The basic architecture used in the early work of Qian and Sejnowski is a fully
connected MLP with a single hidden layer [437]. The input window has an odd
length W , with an optimal size typically of 13 amino acids. Orthogonal encod-
ing is used for the input with an alphabet size |A| = 21, corresponding to 20
amino acids and one terminator symbol to encode partial windows at the N- or
C-terminal. Thus, the input layer has 13× 21 = 273 units. The typical size of
the hidden layer consists of 40 sigmoidal units. The total number of parame-
ters of this architecture is then 273×40+40×3+40+3= 11,083. The output
layer has three sigmoidal units, with orthogonal encoding of the alpha-helix,
the beta-sheet, and the coil classes. The output represents the classification,
into one of the three classes, of the residue located at the center of the input
window. The classification is determined by the output unit with the greatest
activity, an interpretation strategy known as the winner-take-all principle. This
principle acts as an extra nonlinear feature in the relation between the input
and the final output classification. Networks without hidden units will there-
fore, when interpreted by the winner-take-all principle, not be entirely linear.
Another way to put it is that the internal representation in the hidden layer of
the sequence input does not need to be perfectly linearly separable. As long
as the distance to the separating hyperplane is smallest for the correct output
unit, it does not matter that the input representation ends up slightly in the
wrong decision region.

The networks are initialized using random uniform weights in the
[−0.3,0.3] interval, and subsequently trained using backpropagation with
the LMS error function (note that a normalized exponential output layer with
the relative entropy as error function would have been more appropriate).
The typical size of a training set is roughly 20,000 residues extracted from



122 Neural Networks: Applications

the Brookhaven Protein Data Bank (PDB). Thus the ratio of parameters to
examples is fairly high, larger than 0.5. Today many more protein structures
have been solved experimentally, so that a similar database of secondary
structure assignments will be much larger.

When training on protein sequences, a random presentation order of in-
put windows across the training set is used to avoid performance oscillations
associated with the use of contiguous windows. With this architecture, per-
formance goes from a 33% chance level to 60%, after which overfitting begins.
More precisely, the overall correct percentage is Q3 = 62.7%, with the cor-
relation coefficients Cα = 0.35, Cβ = 0.29, and Cc = 0.38 [382]. As a con-
sequence of the imbalance in the amount of helix, sheet, and coil in natural
proteins (roughly found in proportions 0.3/0.2/0.5), mere percentages of cor-
rectly predicted window configurations can be bad indicators of the predictive
performance. A much used alternative measure, which takes into account the
relation between correctly predicted positives and negatives as well as false
positives and negatives, is the correlation coefficient [382],

CX = (PXNX)− (NfXPfX )√
(NX +NfX)(NX + PfX )(PX +NfX)(PX + PfX)

, (6.1)

where X can be any of the categories helix, sheet, coil, or two or more of these
categories merged as one. PX and NX are the correctly predicted positives and

negatives, and PfX and NfX are similarly the incorrectly predicted positives and
negatives. A perfect prediction gives C(X) = 1, whereas a fully imperfect one
gives C(X) = −1 (for a more detailed discussion of this and other performance
measures, see section 6.7 below).

The authors conducted a number of experiments to test architectural and
other variations and concluded that increasing the size of the input beyond 13
or adding additional information, such as amino acid hydrophobicities, does
not lead to performance improvement. Likewise, no improvement appears
to result from using finer secondary structure classification schemes, higher-
order or recurrent networks, or pruning methods.

The main improvement is obtained by cascading the previous architecture
with a second network that can take advantage of the analog certainty values
present in the three output units and their correlations over adjacent posi-
tions. The second network also has an input window of length 13, correspond-
ing to 13 successive outputs of the first network. Thus the input layer of the
top network is 13× 3. The top network also has a hidden layer with 40 units,
and the usual 3 output units. With this cascaded architecture, the overall per-
formance reaches Q3 = 64.3%, with the correlations Cα = 0.41, Cβ = 0.31,
and Cc = 0.41. After training, the authors observed that the top network ulti-
mately cleans up the output of the lower network, mostly by removing isolated
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assignments. From these and other results, it was concluded that there ap-
pears to be a theoretical limit of slightly above 70% performance for any “local”
method, where “local” refers to the size of the input window to the prediction
algorithm. In 1988 these overall results appeared to be much better than all
previous methods, including the renowned Chou-Fasman method [129]. The
subsequent growth in the data material has significantly increased the per-
formance of more advanced NN approaches to this problem, but the increase
has not caused a similar improvement in the performance of the Chou-Fasman
method [549]. As can be seen below, several secondary structure prediction
methods have now exceeded the level of 70% with a comfortable margin—some
are even quite close to the level of 80%.

6.3.2 Prediction Based on Evolutionary Information and Amino Acid
Composition

Most of the subsequent work on predicting secondary structure using NNs
[78, 262, 323, 505, 451, 452, 290, 427] has been based on the architecture
described above, sometimes in combination with other methods [582, 377]
such as the Chou-Fasman rules [129].

In one interesting case the Chou-Fasman rules were used to initialize a
network [377]. This knowledge-based network was born with a performance
similar to the one obtained by encoding the rules directly into the weights. Ex-
perimental data from PDB could then be used to train extra free connections
that had been added. All the exceptions in the relation between input sequence
and conformational categories not covered by the rules would then be handled
by the extra parameters adjusted by training. This network structure is also
interesting because it allows for easy inspection of the weights, although it
still performs only slightly better than the Qian–Sejnowski architecture. Com-
pared to the Chou-Fasman rules, the performance was, as expected, greatly
improved.

An evaluation of the MLP architecture in comparison with Bayesian meth-
ods has also been made [505]. In this work the Bayesian method makes the
unphysical assumption that the probability of an amino acid occurring in each
position in the protein is independent of the amino acids occurring elsewhere.
Still, the predictive accuracy of the Bayesian method was found to be only min-
imally less than the accuracy of the neural networks previously constructed.
A neural formalism in which the output neurons directly represent the con-
ditional probabilities of structural classes was developed. The probabilistic
formalism allows introduction of a new objective function, the mutual infor-
mation, that translates the notion of correlation as a measure of predictive
accuracy into a useful training measure. Although an accuracy similar to other
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approaches (utilizing a mean-square error) is achieved using this new mea-
sure, the accuracy on the training set is significantly higher, even though the
number of adjustable parameters remains the same. The mutual information
measure predicts a greater fraction of helix and sheet structures correctly than
the mean-square-error measure, at the expense of coil accuracy.

Although tests made on different data sets can be hard to compare, the
most significant performance improvement as compared to previous meth-
ods has been achieved by the work of Rost and Sander, which resulted in
the PHD prediction server [451, 452, 453]. In the 1996 Asilomar competition
CASP2 (Critical Assessment of Techniques for Protein Structure Prediction),
this method performed much better than virtually all other methods for mak-
ing predictions of secondary structure [161]. This unique experiment attempts
to gauge the current state of the art in protein structure prediction by means
of blind prediction. Sequences of a number of target proteins that are in the
process of being solved are made available to predictors before the experimen-
tal structures are available. The PHD method reached a performance level of
74% on the unknown test set in the ab initio section of the competition, which
contains contact, secondary structure, and molecular simulation predictions.
This category is the most prestigious and inherently the most difficult predic-
tion category, where the only prior knowledge is the primary structure in the
amino acid sequence.

Prediction of secondary structure in a three-state classification based on
single sequences seems to be limited to < 65–68% accuracy. In the mid-1980s,
prediction accuracy reached 50–55% three-state accuracy, but more advanced
neural network algorithms and increased data sets pushed the accuracy to the
65% level, a mark long taken as insurmountable. The key feature in the PHD
approach, as well as in other even more powerful methods that have been
constructed recently, has been to go beyond the local information contained
in stretches of 13–21 consecutive residues by realizing that sequence families
contain much more useful information than single sequences. Previously, this
conclusion had also been reached in many studies using alignment of multiple
sequences; see for example [587, 139, 60].

The use of evolutionary information improved the prediction accuracy to
> 72%, with correlation coefficients Cα = 0.64 and Cβ = 0.53. The way to use
evolutionary information for prediction was the following. First, a database of
known sequences was scanned by alignment methods for similar sequences.
Second, the list of sequences found was filtered by a length-dependent thresh-
old for significant sequence identity. Third, based on all probable 3D homo-
logues, a profile of amino acid exchanges was compiled. Fourth, this profile
was used for prediction.

The first method been proven in a cross-validation experiment based on
250 unique protein chains to predict secondary structure at a sustained level
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DSSP E   L   L   L   L   L   E   E   E   E   E   E   E   E   E   E   E   E   E   E   H   H   H

SH3  N   S   T   N   K   D   W   W   K   V   E   V   N   D   R   Q   G   F   V   P   A   A   Y

a1   N   K   S   N   P   D   W   W   E   G   E   L   N   G   Q   R   G   V   F   P   A   S   Y
a2   E   E   H   .   G   E   W   W   K   A   K   s   s   K   R   E   G   F   I   P   S   N   Y
a3   R   S   T   .   G   D   W   W   L   A   r   v   T   G   R   E   G   Y   V   P   S   N   F
a4   F   S   .   .   .   .   F   F   G   V   e   v   D   D   L   Q   V   F   V   P   P   A   Y

V    0   0   0   0   0   0   0   0   0  40   0  60   0   0   0   0  20  20  60   0   0   0   0
L    0   0   0   0   0   0   0   0  20   0   0  20   0   0  20   0   0   0   0   0   0   0   0
I    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  20   0   0   0   0
M    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
F   20   0   0   0   0   0  20  20   0   0   0   0   0   0   0   0   0  60  20   0   0   0  20
W    0   0   0   0   0   0  80  80   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
Y    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  20   0   0   0   0  80
G    0   0   0   0  50   0   0   0  20  20   0   0   0  40   0   0  80   0   0   0   0   0   0
A    0   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0   0   0  40  40   0
P    0   0   0   0  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0 100  20   0   0
S    0  60  25   0   0   0   0   0   0   0   0  20  20   0   0   0   0   0   0   0  40  20   0
T    0   0  50   0   0   0   0   0   0   0   0   0  20   0   0   0   0   0   0   0   0   0   0
C    0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
H    0   0  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
R   20   0   0   0   0   0   0   0   0   0  20   0   0   0  60  20   0   0   0   0   0   0   0
K    0  20   0   0  25   0   0   0  40   0  20   0   0  20   0   0   0   0   0   0   0   0   0
Q    0   0   0   0   0   0   0   0   0   0   0   0   0   0  20  40   0   0   0   0   0   0   0
E   20  20   0   0   0  25   0   0  20   0  60   0   0   0   0  40   0   0   0   0   0   0   0
N   40   0   0 100   0   0   0   0   0   0   0   0  40   0   0   0   0   0   0   0   0  40   0
D    0   0   0   0   0  75   0   0   0   0   0   0  20  40   0   0   0   0   0   0   0   0   0

Ndel 0   0   1   3   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0

Nins 0   0   0   0   0   0   0   0   0   0   2   3   1   0   0   0   0   0   0   0   0   0   0
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Figure 6.2: The PHD Architecture for Secondary Structure Prediction Developed by Rost and
Sander. The input is based not on a conventional orthogonal encoding of the query sequence,
but on a profile made from amino acid occurrences in columns of a multiple alignment of
sequences with high similarity to the query sequence.
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of > 72% three-state accuracy was the PHD neural network scheme [451, 452,
453]. For this method the profiles, along with additional information derived
from the multiple sequence alignments and the amino acid content of the pro-
tein, were fed as input into a neural network system, as shown in figure 6.2.
The input was based not on a conventional orthogonal encoding of a single
sequence, but on a profile made from amino acid occurrences in columns of a
multiple alignment of sequences with high similarity to the query sequence. In
the example shown in figure 6.2 five sequences are included in the profile. The
lowercase letters indicate deletions in the aligned sequence. To the resulting
20 values at one particular position in the protein (one column), three values
are added: the number of deletions, the number of insertions, and a conser-
vation weight. Thirteen adjacent columns are used as input. The “L” (loop)
category is equivalent to the coil category in most other work. The whole net-
work system for secondary structure prediction consists of three layers: two
network layers and one layer averaging over independently trained networks.

In this work the profiles were taken from the HSSP database [471]. HSSP
is a derived database merging structural and sequence information. For each
protein of known 3D structure from PDB, the database has a multiple sequence
alignment of all available homologues and a sequence profile characteristic of
the family.

The backpropagation training of the networks was either unbalanced or
balanced. In a large, low-similarity database of proteins the distribution over
the conformational categories helix, sheet, and coil is, as indicated above,
roughly 30%, 20%, and 50%, respectively. In unbalanced training the 13 amino
acid-wide profile vectors were presented randomly with the same frequency.
In the balanced version, the different categories were presented equally often.
This means that the helix and sheet examples were presented about twice as
often as the coil. In the final network system a mixture of networks trained by
these two approaches was used. Networks trained by the balanced approach
allow a much more reliable prediction of the sheet category.

Many other details of the architectures are important in yielding a predic-
tion with a high overall accuracy, a much more accurate prediction of sheets
than previously obtained, and a much better prediction of secondary structure
segments rather than single residues. For 40% of all residues predicted with
high reliability, the method reached a value of close to 90%, that is, was as
accurate as homology modeling would be, if applicable. Almost 10 percentage
points of the improvement in overall accuracy stemmed from using evolution-
ary information.

Clearly, one of the main dangers of the Qian-Sejnowski architecture is the
overfitting problem. Rost and Sander started with the same basic architec-
ture, but used two methods to address the overfitting problem. First, they
used early stopping. Second, they used ensemble averages [237, 340] by train-
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Figure 6.3: Riis and Krogh Network for Predicting Helices. The network uses the local encoding
scheme and has a built-in period of three residues. Dark circles symbolize three hidden units,
and heavy lines, three weights. In the lower part of the figure, shaded triangles symbolize 20
shared weights, and shaded rectangles, 20 input units. The network has a window size of 13
residues and has one output neuron.

ing different networks independently, using different input information and
learning procedures. But the most significant new aspect of their work is the
use of multiple alignments, in the sense that profiles (i.e. position-dependent
frequency vectors derived from multiple alignments), rather than raw amino
acid sequences, are used in the network input. The reasoning behind this is
that multiple alignments contain more information about secondary structure
than do single sequences, the secondary structure being considerably more
conserved than the primary sequence.

6.3.3 Network Ensembles and Adaptive Encoding

Another interesting NN approach to the secondary structure prediction prob-
lem is the work of Riis and Krogh [338, 445], who address the overfitting prob-
lem by careful design of the NN architecture. Their approach has four main
components. First, the main reason underlying the large number of parame-
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ters of the previous architectures is the large input layer (13×21). This number
is greatly reduced by using an adaptive encoding of amino acids, that is, by
letting the NN find an optimal and compressed representation of the input
letters. This is achieved by encoding each amino acid using the analog values
of M units, that is, with a local or distributed encoding. More precisely, the
authors first use an orthogonal encoding with 20 units, the zero vector being
used to represent the N- and C-terminal spacer symbols. Thus the input layer
has size W ×20. This input layer is connected to a first hidden layer of M ×W
units, but with a particular connectivity pattern. Each sequence position in
the input layer is connected to a set of M sigmoidal units, and such connec-
tions are forced to be translation-invariant, that is, identical across sequence
positions. This technique is also called weight-sharing in the NN literature.
In an image-processing problem, the fixed set of connections would equiva-
lently define the kernel of a convolution filter. The weight-sharing property is
easily enforced during training by an obvious modification of the backpropa-
gation algorithm, where weight updates are summed for weights sharing the
same value. Thus each letter of the alphabet is encoded into the analog values
of M units. In pattern-recognition problems, it is also common to think of
the M units as feature detectors. Note that the features useful in solving the
problems are discovered and optimized during learning, and not hardwired in
advance. The number of free connections, including biases, between the full
input layer and this representation layer is only 21×M, regardless of the win-
dow size W . This leads to a great reduction from the over 10,000 parameters
typically used in the first layer of the previous architectures. In their work, the
authors use the values M = 3 and W = 15.

Second, Riis and Krogh design a different network for each of the three
classes. In the case of alpha-helices, they exploit the helix periodicity by build-
ing a three-residue periodicity between the first and second hidden layers (see
figure 6.3). The second hidden layer is fully interconnected to the output layer.
In the case of beta-sheets and coils, the first hidden layer is fully intercon-
nected to the second hidden layer, which has a typical size of 5–10 units. The
second hidden layer is fully connected to the corresponding output unit. Thus
a typical alpha-helix network has a total of 160 adjustable parameters, and
a typical beta-sheet or coil network contains 300–500 adjustable parameters.
The authors used balanced training sets, with the same number of positive
and negative examples, when training these architectures in isolation.

Third, Riis and Krogh use ensembles of networks and filtering to improve
the prediction. Specifically, they use five different networks for each type of
structure at each position. The networks in each ensemble differ, for instance,
in the number of hidden units used. The combining network takes a window
of 15 consecutive single predictions. Thus the input layer to the combining
network has size 15× 3× 5 = 225 (figure 6.4). In order to keep the number of
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parameters within a reasonable range, the connectivity is restricted by having
one hidden unit per position and per ensemble class (α, β, or coil). Thus the
input is locally connected to a hidden layer with 3 × 15 = 45 units. Finally,
the hidden layer is fully connected to three softmax (normalized exponentials)
output units, computing the probability of membership in each class for the
central residue. Consistent with the theory presented above, the error measure
used is the negative log-likelihood, which in this case is the relative entropy
between the true assignments and the predicted probabilities.

Finally, Riis and Krogh use multiple alignments together with a weighting
scheme. Instead of profiles, for which the correlations between amino acids in
the window are lost, predictions are made first from single sequences and are
then combined using multiple alignments. This strategy is also used elsewhere
[587, 457, 358], and can be applied to any method for secondary structure pre-
diction from primary sequences, in combination with any alignment method.
The final prediction is made by combining all the single-sequence predictions
in a given column of the multiple alignment, using a weighting scheme. The
weighting scheme used to compensate for database biases is the maximum-
entropy weighting scheme [337]. The individual score in a given column can
be combined by weighted average or weighted majority, depending on whether
the averaging operates on the soft probability values produced by the single-
sequence prediction algorithm, or on the corresponding hard decisions. One
may expect soft averaging to perform better, since information is preserved
until the very last decision; this is confirmed by the authors’ observations, al-
though the results of weighted average and weighted majority are similar. A
small network with a single hidden layer of five units is then applied to fil-
ter the consensus secondary structure prediction derived, using the multiple
alignment (see [445] for more detail). The small network also uses the fact that
coil regions are less conserved and therefore have higher per-column entropy
in a multiple alignment.

A number of experiments and tests are presented showing that (1) the ar-
chitecture, with its local encoding, avoids the overfitting problem; (2) the per-
formance is not improved by using a number of additional inputs, such as the
normalized length of the protein or its average amino acid composition; (3)
the improvement resulting from each algorithmic component is quantified—
for instance, multiple alignments lead to roughly a 5% overall improvement,
mostly associated with improvement in the prediction of the more conserved
α and β structures; (4) the network outputs can be interpreted as classifica-
tion probabilities. Most important, perhaps, the basic accuracy achieved is
Q3 = 66.3% when using sevenfold cross-validation on the same database of
126 nonhomologous proteins used by Rost and Sander. In combination with
multiple alignments, the method reaches an overall accuracy of Q3 = 71.3%,
with correlation coefficients Cα = 0.59, Cβ = 0.50, and Cc = 0.41. Thus, in
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Figure 6.4: The Ensemble Method in the Riis and Krogh Prediction Scheme for Combining and
Filtering Ensembles of Networks. The combining network (top of figure) takes a window of 3 ×
5× 15 predictions from the ensembles of the dedicated secondary structures. In the combining
network, the ensembles for each of the three structures are weighted separately by position-
specific weights for each window position.

spite of a considerable amount of architectural design, the final performance
is practically identical to [453]. This of course adds evidence to the consensus
of an accuracy upper bound slightly above 70-75% on any prediction method
based on local information only.
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6.3.4 Secondary Structure Prediction Based on Profiles Made by
Position-Specific Scoring Matrices

The key contribution of the PHD method was the use of sequence profiles
that contain more structural information for extraction by the neural network.
Profiles are based on sequences identified by alignment, and the profile quality
obviously depends on the alignment approach used to select the sequences
behind the profile.

The PSI-BLAST method [12] is an iterative approach where the sequences
found in an initial scan of a database (typically Swiss-Prot) based on a single
sequence are used to generate a new search profile, which in turn is used to
pick up additional sequences. This type of “sequence walking” will normally
reach more family members, even if it is also associated with risk of picking
up unrelated sequences, weakening the structurally conserved, family-specific
bias in the profile.

In the PSIPRED method [290, 386] Jones used this iterative approach as a
clever way of generating profiles for use as improved input to the network
scheme. These profiles were based on so-called position-specific scoring matri-
ces and did significantly increase the predictive power of the neural network.
When obtaining the profiles, the initial database scan was performed using the
Blosum62 substitution matrix, while in subsequent scans substitution scores
were calculated from the multiple alignment position by position.

Replacing the HSSP profiles used in the PHD method by this more sophis-
ticated approach led to an increase in predictive performance of several per-
centage points, up to 76.5% for the prediction based on three categories, helix
(DSSP H/G/I), sheet (DSSP E/B) and coil. If the G and I helix categories are in-
cluded in the coil category, the percentage increases further to 78.3%. Thus,
depending on the precise definition of observed secondary structure, the over-
all percent correct varies 1-2%. This variation is essentially the same for most
of the neural network methods, and is in fact observed also for other meth-
ods as well. In the 1998 Asilomar CASP3 competition (Critical Assessment of
Techniques for Protein Structure Prediction), the PSIPRED method was indeed
the best for secondary structure, reaching a performance of 77% on one set of
sequences and 73% on a subset of diffucult targets [324], which is comparable
to the level reported for a larger set of test sequences consisting of 187 unique
folds.

6.3.5 Prediction by Averaging over 800 Different Networks

Although helices and sheets have preferred lengths, as observed in wildtype
proteins, the length distributions for both types of structure are quite broad. If
only a single neural network is used to provide the prediction, the window size
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will have to be selected as a compromise that can best find the transition from
coil to noncoil and from noncoil to coil as measured on a large data set. How-
ever, larger windows can benefit from the additional signal in long secondary
structures, while short windows often will perform better on structures of
minimal length that do not overlap with the previous or next secondary struc-
tures, and so on. As single networks, the large and small windows will perform
worse, but in individual cases they will typically be more confident, i.e., output
values are closer to the saturated values of zero and one.

When combining many different networks, the critical issue is therefore
how to benefit from those networks that overall are suboptimal, but in fact
are more reliable on a smaller part of the data. When the number of networks
becomes large, simple averaging will make the noise from the suboptimal net-
works become very destructive—in one case an upper limit for the productive
number of networks to be combined has been suggested to be around eight
[118]. In this work, approximate performance values for the networks were
at the level of 73.63% (one network), 74.70% (two), 74.73% (four), and 74.76%
(eight) for a three-category prediction scheme.

However, Petersen and coworkers showed recently [427] that it is possible
to benefit from as many as 800 networks in an ensemble with strong archi-
tectural diversity: different window sizes, different numbers of hidden units,
etc. The key element in the procedure is to identify, from the 800 networks,
those predictions that are likely to be of high confidence for a given amino
acid residue in the test data. By averaging over the highly confident predic-
tions only, it becomes possible to exploit many networks and prevent the noise
from the suboptimal networks from eradicating the signal from the confident
true positive (and true negative) predictions.

Using this scheme, it was possible to increase the prediction level above
what could be obtained with the PSIPRED method. When measured on the two
different ways of merging the DSSP categories into categories of helix, sheet,
and coil, the improvement ranged from 77.2% (standard merging) to 80.2% as
measured as the mean at the per-amino acid level. The percentages are slightly
higher when reported as mean per-chain (77.9%-80.6%).

Output Expansion

In this study the performance was improved by introducing another new fea-
ture in the output layer. The Petersen scheme was designed to incorporate
so-called output expansion where the networks provide a prediction not only
for the secondary structure category corresponding to a single (central) amino
acid in the input window, but simultaneous predictions for the neighboring
residues as well.
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This idea is related to earlier ideas of constructing networks by training us-
ing hints that essentially further constrain the network weights, thereby lead-
ing to improved generalization.

Networks that are trained to predict currency exchange rates, e.g. dollar
versus yen, may be improved if they also are forced to predict the American
budget deficit, or similar features that are somehow related to the original
output [1]. This idea must also be formulated as the learning-of-many-related-
tasks-at-the-same-time approach, or multitask learning [115]. A network learn-
ing many related tasks at the same time can use these tasks as inductive bias
for one another and thus learn better.

In protein secondary structure, it is certainly true that the conformational
categories for the adjacent residues represent information that is correlated
to the category one wants to predict. Other hints could be, for example, the
surface exposure of the residue (as calculated from the structure in PDB), or
the hydrophobicity as taken from a particular hydrophobicity scale.

6.4 Prediction of Signal Peptides and Their Cleavage Sites

Signal peptides control the entry of virtually all proteins to the secretory path-
way in both eukaryotes and prokaryotes [542, 207, 440]. They comprise the
N–terminal part of the amino acid chain, and are cleaved off while the protein
is translocated through the membrane.

Strong interest in automated identification of signal peptides and predic-
tion of their cleavage sites has been evoked not only by the huge amount of
unprocessed data available but also by the commercial need for more effective
vehicles for production of proteins in recombinant systems. The mechanism
for targeting a protein to the secretory pathway is believed to be similar in
all organisms and for many different kinds of proteins [296]. But the iden-
tification problem is to some extent organism-specific, and NN-based predic-
tion methods have therefore been most successful when Gram-positive and
Gram-negative bacteria, and eukaryotes have been treated separately [404,
131]. Signal peptides from different proteins do not share a strict consen-
sus sequence—in fact, the sequence similarity between them is rather low.
However, they do share a common structure with a central stretch of 7–15
hydrophobic amino acids (the hydrophobic core), an often positively charged
region in the N-terminal of the preprotein, and three to seven polar, but mostly
uncharged, amino acids just before the cleavage site.

This (and many other sequence analysis problems involving “sites”) can be
tackled from two independent angles: either by prediction of the site itself or
by classifying the amino acids in the two types of regions into two different
categories. Here this would mean classifying all amino acids in the sequence
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as cleavage sites or noncleavage sites; since most signal peptides are below 40
amino acids in length, it makes sense to include only the first 60–80 amino
acids in the analysis. Alternatively, the amino acids could be classified as
belonging to the signal sequence or the mature protein. In the approach de-
scribed below, the two strategies have been combined and found to contribute
complementary information. While the prediction of functional sites often is
fairly local and therefore works best using small windows, larger windows are
often needed to obtain good prediction of regional functional assignment.

6.4.1 SignalP

In the SignalP prediction scheme [404], two types of networks provide different
scores between 0 and 1 for each amino acid in a sequence. The output from the
signal peptide/nonsignal peptide networks, the S-score, can be interpreted as
an estimate of the probability of the position’s belonging to the signal peptide,
while the output from the cleavage site/noncleavage site networks, the C-score,
can be interpreted as an estimate of the probability of the position’s being the
first in the mature protein (position +1 relative to the cleavage site).

In figure 6.5, two examples of the values of C- and S-scores for signal pep-
tides are shown. A typical signal peptide with a typical cleavage site will yield
curves like those shown in figure 6.5A, where the C-score has one sharp peak
that corresponds to an abrupt change in S-score. In other words, the example
has 100% correctly predicted positions, according to both C-score and S-score.
Less typical examples may look like figure 6.5B, where the C-score has several
peaks.

In this work the data were divided into five subsets, and five independent
networks were selected based on cross-validation for each task (and for each
organism class). The individual C- and S-scores were therefore obtained by
averaging over these five networks. In the final implementation for the three
classes of organisms, 15 networks are included for each score. The work on
signal peptide prediction provides another example of the importance of post-
processing of the network outputs, and of how “intelligent” interpretation can
significantly improve the overall performance.

The C-score problem was best solved by networks with asymmetric win-
dows, that is, windows including more positions upstream than downstream
of the cleavage site: 15 and 2–4 amino acids, respectively. This corresponds
well with the location of the cleavage site pattern information when viewed
as a signal peptide sequence logo [404]. The S-score problem, on the other
hand, was overall best solved by symmetric windows, which not surprisingly
are better at identifying the contrast between the compositional differences of
signal peptides and of mature protein. For human and E. coli sequences, these
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Figure 6.5: Examples of Predictions for Sequences with Verified Cleavable Signal Peptides. The
values of the C-score (output from cleavage site networks), S-score (output from signal peptide
networks), and Y-score (combined cleavage site score, Yi =

√
Ci∆dSi) are shown for each position

in the sequences. The C- and S-scores are averages over five networks trained on different parts
of the data. The C-score is trained to be high for the position immediately after the cleavage site,
that is, the first position in the mature protein. The true cleavage sites are marked with arrows.
A is a sequence with all positions correctly predicted according to both C-score and S-score.
B has two positions with C-score higher than 0.5—the true cleavage site would be incorrectly
predicted when relying on the maximal value of the C-score alone, but the combined Y-score is
able to predict it correctly.

windows were larger: 27 and 39 amino acids, respectively.
Since the sequences in most cases have only one cleavage site, it is not

necessary to use as assignment criterion a fixed cutoff of, say, 0.5 when in-
terpreting the C-score for single positions. The C-score networks may also be
evaluated at the sequence level by assigning the cleavage site of each signal
peptide to the position in the sequence with the maximal C-score and calcu-
lating the percentage of sequences with the cleavage site correctly predicted



136 Neural Networks: Applications

by this assignment. This is how the performance of the earlier weight matrix
method [539] was calculated. Evaluating the network output at the sequence
level improved the performance; even when the C-score had no peaks or sev-
eral peaks above the cutoff value, the true cleavage site was often found at the
position where the C-score was highest.

If there are several C-score peaks of comparable strength, the true cleavage
site may often be found by inspecting the S-score curve in order to see which
of the C-score peaks coincides best with the transition from the signal peptide
to the nonsignal peptide region. The best way of combining the scores turned
out to be a simple geometric average of the C-score and a smoothed derivative
of the S-score. This combined measure has been termed the Y-score:

Yi =
√
Ci∆dSi, (6.2)

where ∆dSi is the difference between the average S-score of d positions before
and d positions after position i:

∆dSi = 1
d


 d∑
j=1

Si−j −
d−1∑
j=0

Si+j


 . (6.3)

The Y-score gives a certain improvement in sequence level performance (per-
cent correct) relative to the C-score, but the single-position performance (CC ) is
not improved. An example in which the C-score alone gives a wrong prediction
while the Y-score is correct is shown in figure 6.5B.

It is interesting that this method also can be used for detection of seemingly
wrong assignments of the initiation methionine. Inspection of a number of
long signal peptides deposited in SWISS-PROT has shown that such sequences
often contain a second methionine 5–15 amino acids from the annotated N-
terminus [422]. Figure 6.6 shows a SignalP prediction for the sequence of
human angiotensinogen. In the N-terminal, this sequence has a surprisingly
low S-score, but after the second methionine in the sequence it increases to a
more reasonable level. The prediction strongly indicates that the translation
initiation has been wrongly assigned for this sequence.

6.5 Applications for DNA and RNA Nucleotide Sequences

6.5.1 The Structure and Origin of the Genetic Code

Since the genetic code was first elucidated [407], numerous attempts have been
made to unravel its potential underlying symmetries [216, 6, 509, 514, 125]
and evolutionary history [168, 563, 294, 569]. The properties of the 20 amino
acids and the similarities among them have played a key role in this type of
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Figure 6.6: SignalP Prediction of the Sequence of ANGT_HUMAN, human angiotensinogen. The
S-score (signal peptide score) has a high value for residues within signal peptides, while the C-
and Y-scores (cleavage site scores) are high at position +1 immediately after possible cleavage
sites. Note that the S-score is comparatively low for the region between the first Met and the
second Met.

analysis. The codon assignments are correlated to the physical properties of
the amino acids in a systematic and error-correcting manner. The three posi-
tions in the triplets associate to widely different features of the amino acids.
The first codon position is correlated to amino acid biosynthetic pathways
[569, 514], and to their evolution evaluated by synthetic “primordial soup” ex-
periments [159, 478]. The second position is correlated to the hydrophatic
properties of the amino acids [140, 566], and the degeneracy of the third po-
sition is related to the molecular weight or size of the amino acids [240, 514].
These features are used for error correction in two ways. First, the degen-
eration is correlated to the abundance of the amino acids in proteins, which
lowers the chance that a mutation changes the amino acid [371]. Second, sim-
ilar amino acids have similar codons, which lowers the chance that a mutation
has a hazardous effect on the resulting protein structure [140, 216, 6].

In the neural network approach to studying the structure of the genetic
code, the analysis is new and special in that it is unbiased and completely
data-driven [524]. The neural network infers the structure directly from the
mapping between codons and amino acids as it is given in the standard genetic
code (figure 6.7). Hence, no a priori relationships are introduced between the
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Figure 6.7: The Standard Genetic Code. Triplets encoding the same amino acid are shown in the
same shade of gray.

nucleotides or amino acids.
In the network that learns the genetic code, the input layer receives a nu-

cleotide triplet and outputs the corresponding amino acid. Thus the 64 dif-
ferent triplets are possible as input, and in the output layer the 20 different
amino acids appear (see figure 6.8). Inputs and outputs are sparsely encoded;
12 units encode the input and 20 units encode the output.

Networks with three and four intermediate units were relatively easy to
train; it was harder to obtain perfect networks with two intermediate units.
The only way minimal networks (with two intermediates) could be found was
by an adaptive training procedure [524]. For this task, at least, it was observed
that the conventional backpropagation training scheme treating all training
examples equally fails to find a minimal network, which is known to exist.

The standard technique for training feed-forward architectures is back-
propagation; the aim is to get a low analog network error E but not necessarily
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Figure 6.8: Architecture of the Neural Network Trained to Learn the Standard Genetic Code. The
network had 12 input units, two (or more) intermediate units, and 20 output units. The in-
put layer encoded the nucleotide triplets as a binary string comprising three blocks of four
bits, with adenine as 0001, cytosine as 0010, guanine as 0100, and uracil as 1000. The
output layer encoded the amino acids with alanine as 10000000000000000000, cysteine as
01000000000000000000, . . .. Intermediate and output units had real-valued activities in the
range between 0.0 and 1.0. The network parameters (12 ·2+2 ·20= 64 weights and 2+20= 22
thresholds) were adjusted using the backpropagation algorithm [456] in a balanced form, where
for each codon the training cycle was repeated in inverse proportion to the number of codons
associated with the amino acid. Thus each of the leucine codons received on the average six
times less training than the single methionine codon. During training, the criterion for suc-
cessful learning was that the activity of the corresponding output unit should be larger than all
others (the winner-take-all principle). In each training epoch the codons were presented to the
network in random order.

a low classification error EC . This often makes it difficult to train networks
down to EC = 0.0. In the literature, several training strategies have been pur-
sued in order to obtain low classification errors. First, a simple but effective
modification is to use a high learning rate for wrongly classified examples and
a low learning rate for correctly classified examples. In the first phase of train-
ing, most examples are wrongly classified. This results in a high learning rate
and therefore a fast decrease in network error E . Later in training only the
hard cases have a high learning rate. Thereby noise is introduced and jumps
in the network error level to lower plateaus are favored.

Second, another effective procedure is to modify the presentation frequen-
cies for the different categories so that a more balanced situation results. In
the case of the genetic code this means that the same number of codons should
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be presented for each amino acid, no matter how many appear in the original
code. Thus the single methionine codon should be included in the set six times
and each cysteine codon should appear three times. The training set is then
enlarged from 61 to 186 codons, tripling the training time for each epoch.

Third, an even more powerful strategy for obtaining a low classification er-
ror will be to have an adaptive training set, where the training examples are
included or excluded after determining whether they are classified correctly by
the current network. Such a scheme may introduce more noise in the learning
process, which helps to avoid local minima. Introducing noise in the training
is usually done by updating the network after each example rather than after
each epoch. The next step is to shuffle the examples within each epoch prior
to presentation. Using the adaptive procedure makes the epoch concept dis-
appear, and each example is chosen at random from a pool with subsequent
updating of the network. To increase the frequency of a hard-to-learn example,
each example misclassified is put into the pool of examples, replacing one in
the pool. To ensure that no examples are lost, only part of the pool is open for
exchange. In the long run this procedure ensures that every example is shown
and hard-to-learn examples are shown more often. In summary, the procedure
is as follows:

1. Initialize the first and second parts of the pool with the training exam-
ples.

2. Choose an example randomly from the pool and present it to the net-
work.

3. Train the network by backpropagation.

4. If the example is classified correctly, then go to 2.

5. If the example is misclassified, put it in the second part of the pool, thus
replacing a randomly chosen example.

6. Repeat until EC = 0.

A network with two hidden units was successfully trained using this adap-
tive training scheme. During training, the network develops an internal rep-
resentation of the genetic code mapping. The internal representation of the
structure of the code is given by the activities of the two intermediate units,
which may easily be visualized in the plane. The network transforms the 61
12-component vectors representing the amino acid encoding codons into 61
points in the plane, which, provided the network has learned the code, may be
separated linearly by the 20 output units.

Figure 6.9 shows how the network arrives at the internal representation by
adaptive backpropagation training. Each codon is mapped into a point (x,y)
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in the plane indicated by the one-letter abbreviation for the matching amino
acid. During training, the 61 points follow trajectories emerging from their
prelearning positions close to the center (x ≈ 0.5, y ≈ 0.5) and ending at their
final locations on the edge of a slightly distorted circular region.

The network identifies three groups of codons corresponding to three parts
of the circular region (figure 6.9). Subsequently it was discovered that these
groups divide the GES scale of transfer free energies [166] into three energy
intervals, [−3.7 : −2.6], [−2.0 : 0.2], and [0.7 : 12.3] (kcal/mol), respectively
(see table 6.2). The only case that does not conform to the network group-
ing is the extremely hydrophilic amino acid arginine, which is known to be an
exception in the context of the genetic code [319, 509, 514]. The number of
arginine codons is in conflict with its abundance in naturally occurring pro-
teins [470]. Arginine has been suggested as a late addition to the genetic code
[294]. In alpha-helices it has a surprising tendency to be at the same side as
hydrophobic residues [136]. The network locates arginine in the intermediate
group. The trained network maps the three stop codons to (x,y) positions
in the vicinity of adjacent codons in the code: UAA, UAG close to Tyr (Y), and
UGA close to Trp (W) (points not shown).

The fact that the network needs at least two intermediate units to learn
the genetic code mapping means that the code is inherently nonlinear. In
classification terms this means that the genetic code is nonlinearly separable.
This holds true for the (otherwise sensible) sparse encoding of the nucleotides
used by most workers. Computerized analysis of DNA or pre-mRNA striving
to relate patterns in the nucleotides to amino acids [100, 102] will therefore
be a nonlinear problem regardless of the algorithm applied. It is quite easy to
prove that the genetic code is indeed nonlinear, since all serine codons cannot
be separated linearly from the other codons.

The weights of the trained network have, unlike many other neural net-
works, a fairly comprehensible structure (figure 6.10). The size of the weights
connecting the input units to the intermediates reflects the importance of par-
ticular nucleotides at specific codon positions. Interestingly, the second codon
position has by far the largest weights, followed by the first and third po-
sitions, in agreement with earlier observations [424]. The two intermediate
units to a large extent share the discrimination tasks between them; the unit
to the left is strongly influenced by A or G at the second codon position, and
the unit to the right, by C or U. At the first codon position A and C, and G
and U, influence the two units, respectively. In the genetic code C and U are
equivalent at the third codon position for all amino acids, and similarly for A
and G with the exception of three amino acids (Ile, Met, and Trp). The network
handles this equivalence by having positive and negative weights at the third
codon position for the two pairs.

The rationale behind the correlation between the second position and the
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Figure 6.9: Hidden Unit Activities in the Genetic Code Neural Network. Each plot shows the
two real-valued activities for all 61 amino acid encoding triplets in the code. In the untrained
network with randomly assigned weights, all 61 points are located near the center of the square;
after seven epochs the points have moved into a transient local minimum, where the activities
of the intermediate units are close to 1 and the activities of all the output units are close to 0;
at 30 epochs the groups have started to segregate but are still mixed; finally, at 13,000 epochs
the network positions the 61 codons in groups on the edge of the circular region. After the four
epochs shown, the number of correctly classified codons was 2, 6, 26, and 61, respectively.
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Amino acid Water-oil Codons

Phe −3.7 UUU UUC
Met −3.4 AUG
Ile −3.1 AUU AUC AUA
Leu −2.8 UUA UUG CUU CUC CUA CUG
Val −2.6 GUU GUC GUA GUG

Cys −2.0 UGU UGC
Trp −1.9 UGG
Ala −1.6 GCU GCC GCA GCG
Thr −1.2 ACU ACC ACA ACG
Gly −1.0 GGU GGC GGA GGG
Ser −0.6 UCU UCC UCA UCG AGU AGC
Pro 0.2 CCU CCC CCA CCG

Tyr 0.7 UAU UAC
His 3.0 CAU CAC
Gln 4.1 CAA CAG
Asn 4.8 AAU AAC
Glu 8.2 GAA GAG
Lys 8.8 AAA AAG
Asp 9.2 GAU GAC

Arg 12.3 CGU CGC CGA CGG AGA AGG

Table 6.2: The amino acids and their transfer free energies in kcal/mol as given by the GES scale
[166]. The GES scale separates codons with uracil and adenine at the second codon position from
each other, leaving as an intermediate class amino acids with cytosine and guanine. The transfer
free energy values are computed by considering a hydrophobic term based on the surface area
of the groups involved, and two hydrophilic terms accounting for polar contributions arising
from hydrogen bond interactions and the energy required to convert the charged side chains to
neutral species at pH 7.

hydrophobicity of the amino acids may, in addition to the obvious advantage
of minimizing the likelihood of mutation or mistranslation events changing a
hydrophobic amino acid into a hydrophilic one [538, 409, 87], be more fun-
damental. In the early version of the genetic code, classes of codons coded
for classes of amino acids [562]. Mostly these classes were purely related
to the problem of folding a polypeptide chain in an aqueous environment.
Lipid membranes, which may be phylogenetically older than the cytoplasm
[316, 73, 117, 76], have not played a major role in the literature on the early
protein synthesis apparatus. The problem of understanding the origin of cells
is often dismissed by stating that “somehow” primitive ribosomes and genes
became enclosed by a lipid membrane [117]. In scenarios described by Blobel
and Cavalier-Smith [73, 117], genes and ribosomes associated with the sur-
face of liposome-like vesicles where a mechanism for the cotranslational in-
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Figure 6.10: A Graphical Representation of the Input Unit Weights in the Trained Genetic Code
Network. For each of the three codon positions the height of the letters indicates the size of the
sum of the two weights connecting an input unit to the two intermediate units. If the sum is
negative, the letters are upside down.

sertion of membrane proteins evolved. A segregation into genetic code classes
founded on the amino acid properties in their relation to lipid environments
may therefore also have been a basic necessity.



Applications for DNA and RNA Nucleotide Sequences 145

6.5.2 Eukaryotic Gene Finding and Intron Splice Site Prediction

Since the beginning of the 1980s a highly diverse set of methods has been
developed for the problem of identifying protein-coding regions in newly se-
quenced eukaryotic DNA. Correct exon assignments may in principle be ob-
tained by two independent approaches: prediction of the location of the alter-
nating sequence of donor and acceptor sites, or classification of nucleotides—
or continuous segments of nucleotides—as belonging to either the coding or
the noncoding category.

Intron splice sites have a relatively confined local pattern spanning the
range of 15–60 nucleotides; protein-coding regions (exons) are often much
larger, having typical lengths of 100–150 nucleotides, an interval that is quite
stable across a wide range of eukaryotic species. For both types of objects,
the pattern strength or regularity is the major factor influencing the potential
accuracy of their detection.

Some intron splice site sequences are very close to the “center of gravity”
in a sequence space [344], while others deviate considerably from the consen-
sus pattern normally described in textbooks on the subject (see Figure 1.10
for a sequence logo of donor sites from the plant Arabidopsis thaliana). Like-
wise, exon sequence may conform strongly or weakly to the prevailing reading
frame pattern in a particular organism. The strength of the coding region pat-
tern may be correlated, for example, to the gene expression level or the amino
acid composition of the protein. The codon usage specific to a given organism
and a given gene in most cases creates a fairly strong 3-periodicity with biased
frequencies at the three codon positions [525, 305]. In some organisms, such
as bacteria, the bias is largest on the first position, while in mammals the bias
is strongest on the third position (see figure 6.11). Proteins rich in proline,
serine, and arginine residues will often be associated with bad reading frames
because they have codons that deviate from the prevailing choices on the first
and second codon positions. However, in the context of the mRNA transla-
tion by the ribosome, the strength of a reading frame should be quantified by
inspecting the three different possibilities, not just the average codon usage
statistics [525]. Figure 6.11 shows the overall bias in the nucleotide distribu-
tion on the three codon positions in triplets from coding regions in genes from
Enterobacteria, mammals, Caenorhabditis elegans, and the plant A. thaliana,
respectively.

In a study using neural networks for the prediction of intron splice sites, it
was observed [102] that there is a kind of compensating relationship between
the strength of the donor and acceptor site pattern and the strength of the
pattern present in the associated coding region. Easily detectable exons may
allow weaker splice sites, and vice versa. In particular, very short exons, which
usually carry a weak signal as coding regions, are associated with strong splice
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Figure 6.11: Sequence Logos of Codons from Four Different Types of Organisms: (top) Enter-
obacteria and Mammals; (bottom) C. elegans and A. thaliana. While bacterial genes have a strong
bias on the first codon position, the bias is strongest on the third codon position in mammals.

sites. This relation is also moderated by the distribution for the intron length,
which varies considerably from organism to organism.

The correlation between splice site strength and “exonness” has been ex-
ploited in the artificial neural network-based prediction scheme known as Net-
Gene [102], where two local splice site networks are used jointly with an exon
prediction network equipped with a large window of 301 nucleotides. This
scheme considerably reduces the number of false positive predictions and, at
the same time, enhances the detection of weak splice sites by lowering the pre-
diction threshold when the signal from the exon prediction network is sharp in
the transition region between coding and noncoding sequence segments (see
section 6.5.4).
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6.5.3 Examples of Gene Structure Prediction by Sensor Integration

The use of a combination of sensors for detection of various signals related
to a complex object has a long history in the theory of pattern recognition.
Several schemes have been developed in which NN components play a major
role, earliest the GRAIL and GeneParser systems.

The GRAIL system is an NN-based example of sensor integration used for
coding-region recognition. The first network, from 1991, combined into a
joint prediction seven measures known to provide a nontrivial indication of
the presence of a coding region [528]. The later GRAIL II coding system con-
siders discrete coding-region candidates, rather than using a fixed-size sliding
window for evaluation of the coding potential, as in the earlier system [529].
As one of the input features, the network is provided with a measure of the
length of the coding-region candidate, and can therefore correlate the other
measures specifically to known differences between short and long exons.

The performance of the GRAIL system has evolved over the years primar-
ily by the development of more complex sensor indicators, and not by more
sophisticated neural networks. The MLP with one hidden layer trained by back-
propagation remains the same. Among the most advanced indicators is a fifth-
order nonhomogeneous Markov chain for 6-mer based evaluation of the coding
potential in DNA [529]. The GRAIL system not only performs recognition of
coding-region candidates, but also gene modeling (exon assembly), detection
of indel errors and suggestion of likely corrections, detection of CpG islands,
and recognition of PolII promoters and polyadenylation sites.

In the GeneParser scheme [494] intron/exon and splice site indicators are
weighted by a neural network to approximate the log-likelihood that a se-
quence segment exactly represents an intron or exon (first, internal, or last). A
dynamic programming algorithm is then applied to this data to find the com-
bination of introns and exons that maximizes the likelihood function. Using
this method, suboptimal solutions can be generated rapidly, each of them the
optimum solution containing a given intron–exon junction. The authors also
quantified the robustness of the method to substitution and frame-shift errors
and showed how the system can be optimized for performance on sequences
with known levels of sequencing errors.

Dynamic programming (DP) is applied to the problem of precisely identi-
fying internal exons and introns in genomic DNA sequences. The GeneParser
program first scores the sequence of interest for splice sites and for the fol-
lowing intron- and exon-specific content measures: codon usage, local compo-
sitional complexity, 6-tuple frequency, length distribution, and periodic asym-
metry. This information is then organized for interpretation by DP. GeneParser
employs the DP algorithm to enforce the constraints that introns and exons
must be adjacent and nonoverlapping, and finds the highest-scoring combi-
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nation of introns and exons subject to these constraints. Weights for the
various classification procedures are determined by training a simple feed-
forward neural network to maximize the number of correct predictions. In a
pilot study, the system has been trained on a set of 56 human gene fragments
containing 150 internal exons in a total of 158,691 bps of genomic sequence.
When tested against the training data, GeneParser precisely identifies 75% of
the exons and correctly predicts 86% of coding nucleotides as coding, while
only 13% of non-exon bps were predicted to be coding. This corresponds to a
correlation coefficient for exon prediction of 0.85. Because of the simplicity of
the network weighting scheme, generalized performance is nearly as good as
with the training set.

6.5.4 Prediction of Intron Splice Sites by Combining Local and Global
Sequence Information

The complementarity of the splice site strength and coding region intensity
was discovered in an NN study where prediction of sites was combined with
a coding/noncoding prediction in the NetGene method [102]. The first Net-
Gene program from 1991 was trained exclusively on human sequences, and
has been available on the Internet since 1992 (netgene@cbs.dtu.dk). In this
method three separate networks work together: the assignment thresholds of
two local donor and acceptor sites’ networks are regulated by a global network
performing a coding/noncoding prediction. The three networks use windows
of 15, 41, and 301 bp, respectively. Instead of a fixed threshold for splice site
assignment in the local networks, the sharpness of the transition of the global
exon-to-intron signal regulates the actual threshold. The aim was to improve
the ratio between true and false donor and acceptor sites assigned. In regions
with abruptly decreasing exon activity, donor sites should be “promoted” and
acceptor sites suppressed, and vice versa in regions with abruptly increasing
exon activity. In regions with only small changes in exon activity—that is,
where the level was constantly high (inside exons) and where it was constantly
low (inside introns, in untranslated exons and in the intergenic DNA)—a rather
high confidence level in the splice site assignment should be demanded in or-
der to suppress false positives.

To detect edges in the coding/noncoding output neuron levels, essentially
the first derivative of the coding output neuron activity was computed by sum-
ming activities to the right of a given point and subtracting the corresponding
sum for the left side, then dividing this difference by the number of addends.
In order to reduce the number of cases where the individual sums covered
both intron and exon regions, half the average length of the internal exons in
the training set, 75 bp, was used as the scope when summing, giving deriva-
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tives close to +1 in the 3’ end of introns and close to −1 in the 5’ end for
perfect coding/noncoding assignments.

In figure 6.12 an average-quality example of the coding/noncoding signal,
the derivative ∆, and the forest of donor and acceptor site signals exceeding
an activity of 0.25 are given for the GenBank entry HUMOPS, taken from the
test set used in the study [102]. Note that some regions inside introns and in
the nontranscribed part of the sequences show exonlike behavior.

In compiling algorithms that regulate the splice site assignment levels, the
following expressions were used to assess possible weightings between the
strength of the exon signal and the output, O, from the separate splice site
networks: if

Odonor > eD∆+ cD (6.4)

assign splicing donor site, and if

Oacceptor > eA∆+ cA (6.5)

assign splicing acceptor site, where ∆ was computed as described above. The
constants cD and cA are equivalent to the ordinary cutoff assignment param-
eters, whereas eD and eA control the impact of the exon signal. Together the
four constants control the relative strengths between the donor site and the
coding/noncoding network on one side, and between the acceptor site and the
coding/noncoding network on the other.

The four constants were optimized in terms of correlation coefficients and
the percentage of true splice sites detected [102]. Compared with other meth-
ods, the number of false positives assigned was much lower—by a factor be-
tween 2 and 30, depending on the required level of detection of true sites—
when the cutoff assignment level was controlled by the exon signal.

The general picture concerning the confidence levels on the splice site pre-
diction and the coding/noncoding classification (as measured by the output
neuron activities) was that exons smaller than 75 bp had rather weak exon
output neuron levels (0.3–0.6) but relatively strong donor and acceptor site
output neuron levels (0.7–1.0). Conversely, longer internal exons in general
had rather sharp edges in the output neuron activities, with donor and accep-
tor site activities being somewhat weaker.

A similar method has been developed for prediction of splice sites in the
plant Arabidopsis thaliana, NetPlantGene [245]. This plant model organism
was the first for which the complete genome was sequenced, as the size of
its genome (400Mbp) is very moderate compared with many other plants (see
figure 1.2).
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Figure 6.12: The Steps in the Operation of the NetGene Method for Prediction of Splice Sites on
the Test Gene with GenBank Locus HUMOPS. A. (Top) Analog output from the output neuron
in the coding/noncoding network, showing strong exon signals from the correct exons. Inside
the introns and in the terminal nontranscribed part of the sequence, a number of regions show
exonlike behavior. The boxes correspond to correct exons and the joining lines to introns,
whereas the top line gives the extension of the transcript. B. The derivative of the analog cod-
ing/noncoding output. C. The donor site activities (≥ 0.25) from the donor site assignment
network. D. (Bottom) The acceptor site activities (≥ 0.25) from the acceptor site assignment
network. The variable cutoff assignment level for a 90% detection of true splice sites is shown
as a dashed curve on the pin diagrams (3 and 4).
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6.5.5 Doing Sequence Analysis by Inspecting the Order in Which
Neural Networks Learn

Neural networks are well known for their ability to generalize from a set of
examples to new cases. Recently another ability of the method has been recog-
nized: important information on the internal structure of the training material
can be obtained if the learning process is monitored carefully. A network does
not learn the examples in random order; depending on the number of ad-
justable parameters, it will learn the linearly separable part of the data first
and outliers that deviate from the prevailing patterns later. This was clear
from the early work of Qian and Sejnowski [437] and from other work on
alpha-helix prediction in proteins [244]. The training proceeds in two phases:
a linearly separable part of the data is learned fast, while other examples are
correctly classified by the network more slowly. In this later phase the net-
work will often unlearn some of the examples learned in the first phase. It is
obvious from the work on the genetic code described above that a similar, but
more complex, picture emerges here.

The order in which a set of examples is learned first by a network reveals
information on the relative nonlinearity of each single example, and hence on
the pattern of regularity present in the complete set [97, 98]. This in turn can
be used to identify abnormal examples that deviate strongly from the prevail-
ing patterns, either due to the application of unnatural classification strategies
or simply due to classification errors introduced randomly, without systemat-
ics. The neural network method provides a means for obtaining a high-quality
feedback on low-quality data with a sound balance between abilities to model
complex systematics and to detect deviations from ill-defined rules.

The ability to find errors has been exploited in many different projects, not
only in the area of sequence analysis but also in other cases where input data
may be assigned to an incorrect category. In the work using networks to pre-
dict intron splice sites, it was described in detail how to find errors produced
by very different sources [100, 101]. During a training session the success
of the learning was monitored in two different ways, one taking the training
set as a whole and the other inspecting each window configuration separately.
The performance on the training set as a whole is quantified by monitoring
the decrease in the total network error E. If E remains constant for a large
number of presentations of the training set, it indicates that no improvement
can be gained from further training. The network has learned a single window
configuration if the real–numbered activity of the output neuron fell on the
same side of a cutoff value as the training target of the window configuration
in question. The cutoff value separating the two output category assignments
was mostly chosen to be 0.5. Thus, at any moment during training, an objec-
tive criterion for successful learning points uniquely to those inputs not being
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Epoch GenBank Locus Sequence

1 HUMA1ATP TACATCTTCTTTAAAGGTAAGGTTGCTCAACCA
1 HUMA1ATP CCTGAAGCTCTCCAAGGTGAGATCACCCTGACG
1 HUMACCYBA CCACACCCGCCGCCAGGTAAGCCCGGCCAGCCG
1 HUMACCYBA CGAGAAGATGACCCAGGTGAGTGGCCCGCTACC
1 HUMACTGA GCGCCCCAGACACCAGGTGAGTGGATGGCGCCG
1 HUMACTGA AGAGAAGATGACTCAGGTGAGGCTCGGCCGACG
1 HUMACTGA CACCATGAAGATCAAGGTGAGTCGAGGGGTTGG
1 HUMADAG TCTTATACTATGGCAGGTAAGTCCATACAGAAG
1 HUMALPHA CGTGGCTCTGTCCAAGGTAAGTGCTGGGCTACC
1 HUMALPI CCTGGCTCTGTCCAAGGTAAGGGCTGGGCCACC
1 HUMALPPD TGTGGCTCTGTCCAAGGTAAGTGCTGGGCTACC
1 HUMAPRTA CCTGGAGTACGGGAAGGTAAGAGGGCTGGGGTG
1 HUMCAPG GAAGGCTGCCTTCAAGGTAAGGCATGGGCATTG
1 HUMCFVII GGAGTGTCCATGGCAGGTAAGGCTTCCCCTGGC
1 HUMCP21OH CACCTTGGGCTGCAAGGTGAGAGGCTGATCTCG
1 HUMCP21OHC CACCTTGGGCTGCAAGGTGAGAGGCTGATCTCG
1 HUMCS1 GTGGCAATGGCTCCAGGTAAGCGCCCCTAAAAT
1 HUMCSFGMA AATGTTTGACCTCCAGGTAAGATGCTTCTCTCT
1 HUMCSPB AAAGACTTCCTTTAAGGTAAGACTATGCACCTG
1 HUMCYC1A GCTACGGACACCTCAGGTGAGCGCTGGGCCGGG
. . . . . . . . .
2 HUMA1ATP CCTGGGACAGTGAATCGTAAGTATGCCTTTCAC
2 HUMA1ATP AAAATGAAGACAGAAGGTGATTCCCCAACCTGA
2 HUMA1GLY2 CGCCACCCTGGACCGGGTGAGTGCCTGGGCTAG
2 HUMA1GLY2 GAGAGTACCAGACCCGGTGAGAGCCCCCATTCC
2 HUMA1GLY2 ACCGTCTCCAGATACGGTGAGGGCCAGCCCTCA
2 HUMA1GLY2 GGGCTGTCTTTCTATGGTAGGCATGCTTAGCAG
2 HUMA1GLY2 CACCGACTGGAAAAAGGTAAACGCAAGGGATTG
2 HUMACCYBA GCGCCCCAGGCACCAGGTAGGGGAGCTGGCTGG
2 HUMACCYBA CAGCCTTCCTTCCTGGGTGAGTGGAGACTGTCT
2 HUMACCYBA CACAATGAAGATCAAGGTGGGTGTCTTTCCTGC
2 HUMACTGA TCGCGTTTCTCTGCCGGTGAGCGCCCCGCCCCG
2 HUMADAG CTTCGACAAGCCCAAAGTGAGCGCGCGCGGGGG
2 HUMADAG TGTCCAGGCCTACCAGGTGGGTCCTGTGAGAAG
2 HUMADAG CGAAGTAGTAAAAGAGGTGAGGGCCTGGGCTGG
. . . . . . . . .
11 HUMCS1 AACGCAACAGAAATCCGTGAGTGGATGCCGTCT
11 HUMGHN AACACAACAGAAATCCGTGAGTGGATGCCTTCT
52 HUMHSP90B CTCTAATGCTTCTGATGTAGGTGCTCTGGTTTC
80 HUMMETIF1 ACCTCCTGCAAGAAGAGTGAGTGTGAGGCCATC

112 HUMHSP90B ATACCAGAGTATCTCAGTGAGTATCTCCTTGGC
113 HUMHST GCGGACACCCGCGACAGTGAGTGGCGCGGCCAG
113 HUMLACTA GACATCTCCTGTGACAGTGAGTAGCCCCTATAA
151 HUMKAL2 ATCGAACCAGAGGAGTGTACGCCTGGGCCAGAT
157 HUMCS1 CACCTACCAGGAGTTTGTAAGTTCTTGGGGAAT
157 HUMGHN CACCTACCAGGAGTTTGTAAGCTCTTGGGGAAT
164 HUMALPHA CAACATGGACATTGATGTGCGACCCCCGGGCCA
622 HUMCFVII CTGATCGCGGTGCTGGGTGGGTACCACTCTCCC
636 HUMADAG CCTGGAACCAGGCTGAGTGAGTGATGGGCCTGG
895 HUMAPOCIB TCCAGCAAGGATTCAGGTTGTTGAGTGCTTGGG
970 HUMALPHA CGGGCCAAGAAAGCAGGTGGAGCTGGGGCCCGG

2114 HUMAPRTA ATCGACTACATCGCAGGCGAGTGCCAGTGGCCG

Table 6.3: Donor Site Window Configurations Learned Early and Late in the Course of Training.
The applied network was small (nine nucleotides in the window, two hidden units, and one
output unit), and it was trained on small 33bp segments surrounding the 331 splice sites in part
I of the data set. Shown is the training epoch at which a configuration was assigned that spliced
donor correctly by the network, its GenBank locus, and the nucleotide context surrounding the
central G. Segments with large deviations from the standard donor site consensus sequence,
C
A AG/GTGAAGT, were learned only after a relatively large number of presentations.
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classified correctly.
Table 6.3 shows how a small network with limited resources learns the

donor sites. Many of them are learned quickly, while others require a con-
siderable number of epochs. By examining the unlearnable window configu-
rations, it was shown that a surprisingly large number of wrongly assigned
donor sites could be detected. They appear in the public databases due to
insufficient proofreading of the entries, but also due to experimental errors
and erroneous interpretation of experiments. Information about the degree
of regularity of, for example, donor site window configurations could be ob-
tained by monitoring the course of the training. For the donor site assignment
problem, window configurations learned early in the training process showed
stronger conformity to the standard 5’ consensus sequence C

AAG/GTG
AAGT than

those learned late.

6.6 Prediction Performance Evaluation

Over the years different means for evaluating the accuracy of a particular pre-
diction algorithm have been developed [31]. Some prediction methods are
optimized so as to produce very few false positives, others to produce very
few false negatives, and so on. Normally it is of prime interest to ensure, for
any type of prediction algorithm, that the method will be able to perform well
on novel data that have not been used in the process of constructing the algo-
rithm. That is, the method should be able to generalize to new examples from
the same data domain.

It is often relevant to measure accuracy of prediction at different levels. In
signal peptide prediction, for example, accuracy may be measured by count-
ing how many sequences are correctly classified as signal peptides or non-
secretory proteins, instead of counting how many residues are correctly pre-
dicted to belong to a signal peptide. Similarly, protein secondary structure
may be evaluated at the mean per-chain level, or at the per-amino acid level.

At higher levels, however, the measures tend to be more complicated and
problem-specific. In the signal peptide example, it is also relevant to ask how
many signal peptide sequences have the position of the cleavage site correctly
predicted. In gene finding, a predicted exon can have have both ends correct,
or only overlap to some extent. Burset and Guigo [110] have defined four
simple measures of gene-finding accuracy at the exon level—sensitivity, speci-
ficity, “missing exons”, and “wrong exons”—counting only predictions that are
completely correct or completely wrong. For secondary structure prediction,
this approach would be too crude, since the borders of structure elements (he-
lices and sheets) are not precisely defined. Instead, the segment overlap mea-
sure (SOV) can be applied [454, 580]. This is a set of segment-based heuristic
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evaluation measures in which a correctly predicted segment position can give
maximal score even though the prediction is not identical to the assigned seg-
ment. The score punishes broken predictions strongly, such as two predicted
helices where only one is observed compared to one too small unbroken helix.
In this manner the uncertainty of the assignment’s exact borders is reflected
in the evaluation measure. As this example illustrates, a high-level accuracy
measure can become rather ad hoc when the precise nature of the prediction
problem is taken into consideration.

For the sake of generality, we will therefore focus our attention on sin-
gle residue/nucleotide assessment measures. For the secondary structure
problem, consider an amino acid sequence of length N. The structural data
D available for the comparison is the secondary structure assignments D =
d1, . . . , dN . For simplicity, we will first consider the dichotomy problem of
two alternative classes, for instance α-helix versus non-α-helix. In this case,
the dis are in general equal to 0 or 1. We can also consider the case where
di has a value between 0 and 1, for example representing the surface expo-
sure of amino acids, or the probability or degree of confidence, reflecting the
uncertainty of our knowledge of the correct assignment at the corresponding
position. The analysis for the multiple-class case, corresponding for exam-
ple to three states, α-helices, β-sheets, and coil, is very similar. We now as-
sume that our prediction algorithm or model, outputs a prediction of the form
M =m1, . . . ,mN . In general, mi is a probability between 0 and 1 reflecting our
degree of confidence in the prediction. Discrete 0/1 outputs, obtained for in-
stance by thresholding or “winner-take-all” approaches, are also possible and
fall within the theory considered here. The fundamental and general question
we address is: How do we assess the accuracy of M, or how do we compare M
to D?

A variety of approaches have been suggested in different contexts and at
different times and this may have created some confusion. The issue of predic-
tion accuracy is strongly related to the frequency of occurrence of each class.
In protein secondary structure prediction the non-helix class covers roughly
70% of the cases in natural proteins, while only 30% belong to the helix class.
Thus a constant prediction of “non-helix” is bound to be correct 70% of the
time, although it is highly non-informative and useless.

Below we review different approaches and clarify the connections among
them and their respective advantages and disadvantages.

A fundamental simplifying assumption underlying all these approaches is
that the amino acid positions are weighted and treated equally (the indepen-
dence and equivalence assumption). Thus, we assume e.g. that there is no
weighting scheme reducing the influence of positions near the N- or C-termini,
or no built-in mechanism that takes into account the fact that particular pre-
dictions must vary somewhat “smoothly” (for instance, if a residue belongs to



Different Performance Measures 155

the α-helix category, its neighbors have a slightly higher chance of also be-
ing in the α-helix category). Conversely, when predicting functional sites such
as intron splice sites, translation start sites, glycosylation, or phosphorylation
sites, we assume the prediction of a site is either true or false, so that there is
no reward for almost correctly placed sites.

Under the independence and equivalence assumption, if both D and M are
binary, it is clear that their comparison can be entirely summarized by four
numbers

• TP = number of times di is helix, mi is helix (true positive)

• TN = the number of times di is non-helix, mi is non-helix (true negative)

• FP = the number of times di is non-helix, mi is helix (false positive)

• FN = the number of times di is helix, mi is non-helix (false negative)

satisfying TP + TN + FP + FN = N. When D and/or M are not binary, then
of course the situation is more complex and four numbers do not suffice to
summarize the situation. When M is not binary, binary predictions can still be
obtained by using cutoff thresholds. The numbers TP , TN, FP , and FN will
then vary with the threshold choice. The numbers TP , TN, FP , and FN are
often arranged into a 2× 2 contingency matrix,

M M̄
D TP FN
D̄ FP TN

Even with four numbers alone, it is not immediately clear how a given pre-
diction method fares. This is why many of the comparison methods aim at
constructing a single number measuring the “distance” between D and M. But
it must be clear from the outset that information is always lost in such a pro-
cess, even in the binary case, i.e. when going from the four numbers above to
a single one. In general, several different vectors (TP , TN, FP , FN) will yield
the same distance. We now review several ways of measuring the performance
of M and their merits and pitfalls.

6.7 Different Performance Measures

6.7.1 Percentages

The first obvious approach is to use percentages derived from TP , TN, FP ,
and FN. For instance, Chou and Fasman [128, 129] used the percentage of
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correctly predicted helices

PCP(D,M) = 100
TP

TP + FN , (6.6)

which is the same as the sensitivity (see section 6.7.9) expressed as a per-
centage. This number alone provides no information whatsoever about false
positives. It can be complemented by the percentage of correctly predicted
non-helices

PCN(D,M) = 100
TN

TN + FP . (6.7)

The average of the previous two numbers has been used in the literature
[128, 129] and is often called Qα. While Qα is a useful indicator, it can be
misleading [549] and can be computed only if both D and M are binary. Intu-
itively, any single number that is constructed using only two numbers out of
the four (TP, TN, FP , FN) is bound to be highly biased in some trivial way.
If the two numbers are TP and FP , for instance, then any two situations
(TP , TN, FP , FN) and (TP , TN′, FP , FN′) lead to the same score regardless of
how different they may be.

6.7.2 Hamming Distance

In the binary case, the Hamming distance between D and M is defined by

HD(D,M) =
∑
i
|di −mi|. (6.8)

This sum is obviously equal to the total number of errors FP + FN. Thus it
is equivalent to a single percentage measure. This distance does not take into
account the proportion of examples that belong to a given class. It becomes
less and less useful as this proportion moves away from 50%. In the non purely
binary case, the Hamming distance is called the L1 distance.

6.7.3 Quadratic “Distance”

The quadratic or Euclidean or LMS (least mean square) “distance” is defined by

Q(D,M) = (D−M)2 =
∑
i
(di −mi)2. (6.9)

Strictly speaking, a proper distance is defined by taking the square root of
the above quantity (see the L2 distance in the next section). In the purely
binary case, the quadratic distance reduces to the Hamming distance and is
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again equal to FP + FN. This quantity has the advantage of being defined for
non-binary variables, and it is often associated with a negative log-likelihood
approach for a Gaussian model of the form

P(di|mi) = 1
σ
√

2π
exp(−(di −mi)2/2σ2) (6.10)

where σ acts as a scaling factor with respect to Q(D,M). For binary variables,
the quadratic distance is identical to the Hamming distance. The main draw-
back is that the Gaussian model is often not relevant for prediction problems
and the value of the quadratic distance again poorly reflects the proportion of
positions that belongs to a given class. Another problem is that the LMS dis-
tance has a limited dynamic range due to the fact that mi and di are between
0 and 1. This is not ideal for learning algorithms where large error signals can
be used to accelerate the learning process. A logarithmic variation on the LMS
distance that obviates this problem is given by

LQ(D,M) = −
∑
i

log[1− (di −mi)2]. (6.11)

This modified error function has been used in several neural network imple-
mentations; see for example [99, 245, 236].

6.7.4 Lp Distances

More generally, the LP distance is defined by

LP(D,M) = [
∑
i
|di −mi|p]1/p. (6.12)

Such a distance applies of course to any numerical values. When p = 1 we
find the Hamming distance, and when p = 2 we find the proper Euclidean
distance. When p → ∞, the L∞ distance is the sup distance: maxi |di −mi|.
This distance provides an upper bound associated with the worst case, but is
not very useful in assessing the performance of a protein secondary structure
prediction algorithm. Other values of p are rarely used in practice, and are of
little help for assessing prediction performance in this context. In the binary
case, the Lp distance reduces to (FP + FN)1/p . For p = 1, this reduces again
to the Hamming distance.
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6.7.5 Correlation

One of the standard measures used by statisticians is the correlation coeffi-
cient, also called the Pearson correlation coefficient:

C(D,M) =
∑
i

(di − d̄)(mi − m̄)
σDσM

, (6.13)

where d̄ = ∑di/N and m̄ = ∑mi/N are the averages and σD, σM the corre-
sponding standard deviations. In the context of secondary structure predic-
tion, this is also known as the Matthews correlation coefficient in the literature
since it was first used in [382]. The correlation coefficient is always between
−1 and +1 and can be used with non-binary variables. It is a measure of how
strongly the normalized variables (di − d̄)/σD and (mi − m̄)/σM tend to have
the same sign and magnitude. A value of −1 indicates total disagreement and
+1 total agreement. The correlation coefficient is 0 for completely random
predictions. Therefore it yields easy comparison with respect to a random
baseline. If two variables are independent, then their correlation coefficient is
0. The converse in general is not true.

In vector form, the correlation coefficient can be rewritten as a dot product
between normalized vectors

C(D,M) = (D− d̄1)(M− m̄1)√
(D− d̄1)2

√
(M− m̄1)2

= DM−Nd̄m̄√
(D2 −Nd̄2)(M2 −Nm̄2)

, (6.14)

where 1 denotes the N-dimensional vector of all ones. As such, C(D,M) is
related to the L2 distance, but is not a distance itself since it can assume
negative values. If the vectors D and M are normalized, then clearly Q(D,M) =
(D −M)2 = 2 − 2DM = 2 − 2C(D,M). Unlike some of the previous measures,
the correlation coefficient has a global form rather than being a sum of local
terms.

In the case where D and M consist of binary 0/1 vectors, we have D2 =
TP + FN, M2 = TP + FP , DM = TP , etc. With some algebra the sum above can
be written as

C(D,M) = TP −Nd̄m̄
N
√
d̄m̄(1− d̄)(1− m̄)

. (6.15)

Here the average number of residues in the helix class satisfies d̄ = (TP +
FN)/N, and similarly for the predictions m̄ = (TP + FP)/N. Therefore

C(D,M) = N × TP − (TP + FN)(TP + FP)√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

= TP × TN − FP × FN√
(TP + FN)(TP + FP)(TN + FP)(TN + FN) . (6.16)
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The correlation coefficient uses all four numbers (TP , TN, FP , FN) and may
often provide a much more balanced evaluation of the prediction than for
instance the percentages. There are situations, however, where even the cor-
relation coefficient is unable to provide a completely fair assessment. The
correlation coefficient will, for example, be relatively high in cases where a
prediction algorithm gives very few or no false positives, but at the same time
very few true positives. One simple observation that will be useful in a later
section is that C is symmetric with respect to FP and FN.

One interesting property of the correlation coefficient is that there is a sim-
ple approximate statistical test for deciding whether it is significantly better
than zero, i.e. whether the prediction is significantly more correlated with the
data than a random guess with the same m̄ would be. If the chi-squared test
is applied to the 2 × 2 contingency matrix containing TP , TN, FP , and FN, it
is easy to show that the test statistic is χ2 = N × C2(D,M).

6.7.6 Approximate Correlation

Burset and Guigo [110] defined an “approximate correlation” measure to com-
pensate for an alleged problem with the Matthews correlation coefficient: that
it is not defined when any of the sums TP+FN, TP+FP , TN+FP , or TN+FN
reaches zero, e.g. if there are no positive predictions. Instead, they use the Av-
erage Conditional Probability (ACP ), which is defined as

ACP = 1
4

[
TP

TP + FN + TP
TP + FP +

TN
TN + FP +

TN
TN + FN

]
(6.17)

if all the sums are nonzero; otherwise, it is the average over only those con-
ditional probabilities that are defined. The Approximate Correlation (AC) is a
simple transformation of the ACP :

AC = 2× (ACP − 0.5). (6.18)

Like C , AC gives 1, 0, and −1 for perfect, random, and all-false predictions, re-
spectively, and Burset and Guigó observe that it is close to the real correlation
value.

However, the problem they intend to solve does not exist, since it is easy to
show that C approaches 0 if any of the sums approaches 0. This also makes
intuitive sense, since a prediction containing only one category is meaningless
and does not convey any information about the data. On the contrary, it can be
shown that the AC approach introduces an unfortunate discontinuity in this
limit because of the deletion of undefined probabilities from the expression
for ACP , so it does not give 0 for meaningless predictions. Since there is
furthermore no simple geometrical interpretation for AC , it is an unnecessary
approximation and we see no reason to encourage its use.
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6.7.7 Relative Entropy

The relative entropy, or cross entropy, or KL (Kullback-Leibler) contrast be-
tween two probability vectors X = (x1, . . . , xM) and Y = (y1, . . . , yM) with
xi,yi ≥ 0 and

∑
xi =

∑
yi = 1 is defined as

H(X,Y) =
M∑
i=1

xi log
xi
yi
= −H(X)−

∑
i
xi logyi (6.19)

where H(X) = −∑xi logxi is the usual entropy. It has its roots in information
theory [342, 341]. It is well known that H(X,Y) is always positive, convex in
both its variables, and equal to 0 if and only if X = Y. Strictly speaking, it is
not a distance, for instance because it is not symmetric. It is easy to construct
a distance using a symmetrized version. In practice, however, this is rarely
necessary and the form above is sufficient. If Y = X + ε is close to X, then a
simple Taylor expansion shows that

H(X,X+ ε) = −
∑
i
xi
[
log(1+ εi

xi
)
]
≈
∑
i

ε2
i
xi
. (6.20)

In particular, if X is uniform, then in its neighborhood the relative entropy
behaves like the LMS error.

Returning to the secondary structure prediction problem, we can then as-
sess the performance of the prediction M by the quantity:

H(D,M) =
N∑
i=1

[
di log

di
mi

+ (1− di) log
(1− di)
(1−mi)

]
. (6.21)

This is just the sum of the relative entropies at each position i. This form of
course works perfectly well on non-binary data (for example, binding affini-
ties), or when D alone is binary. When M is also binary, then the relative
entropy has FP + FN components that are infinite (it behaves like H(D,M) ≈
(FP + FN)∞) and cannot really be used.

6.7.8 Mutual Information

Consider two random variables X and Y with probability vectors X =
(x1, . . . , xM) and Y = (y1, . . . , yK). Let Z be the joint random variable
Z = (X,Y) over the cartesian product with probability vector Z. The mutual
information I(X,Y) or I(X,Y) between X and Y is defined as the relative
entropy between Z and the product XY:

I(X,Y) = H(Z,XY). (6.22)
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As such it is always positive. It is easy to understand the mutual information in
Bayesian terms: it represents the reduction in uncertainty of one variable when
the other is observed, that is between the prior and posterior distributions. The
uncertainty in X is measured by the entropy of its prior H(X) = ∑xi logxi.
Once we observe Y = y , the uncertainty in X is the entropy of the posterior
distribution, H(X|Y = y) = ∑x P(X = x|Y = y) logP(X = x|Y = y). This
is a random variable that depends on the observation y . Its average over the
possible ys is called the conditional entropy:

H(X|Y) =
∑
y
P(y)H(X|Y = y). (6.23)

Therefore the difference between the entropy and the conditional entropy mea-
sures the average information that an observation of Y brings about X. It is
straightforward to check that

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) = H(X)+H(Y)−H(Z) = I(Y,X)
(6.24)

or, using the corresponding distributions,

I(X,Y) = H(X)−H(X|Y) = H(Y)−H(Y|X) = H(X)+H(Y)−H(Z) = I(Y,X).
(6.25)

Going back to the secondary structure problem, when D and M are both
binary, the mutual information is measured by

I(D,M) = −H
(
TP
N
,
TN
N
,
FP
N
,
FN
N

)

−TP
N

log
[TP + FP

N
TP + FN

N

]
− FN
N

log
[TP + FN

N
TN + FN

N

]

−FP
N

log
[TP + FP

N
TN + FP

N

]
− TN
N

log
[TN + FN

N
TN + FP

N

]
(6.26)

or

I(D,M) = −H
(
TP
N
,
TN
N
,
FP
N
,
FN
N

)

−TP
N

log[d̄m̄]− FN
N

log[d̄(1− m̄)]

−FP
N

log[(1− d̄)m̄]− TN
N

log[(1− d̄)(1− m̄)] (6.27)

(see also [549]), where d̄ = (TP + FN)/N and m̄ = (TP + FP)/N (as before),
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and

H(
TP
N
,
TN
N
,
FP
N
,
FN
N
) = −TP

N
log

TP
N
− TN
N

log
TN
N

− FP
N

log
FP
N
− FN
N

log
FN
N

(6.28)
is the usual entropy. Like the correlation, the mutual information is a global
measure rather than a sum of local terms. It is clear that the mutual informa-
tion always satisfies 0 ≤ I(D,M) ≤ H(D). Thus in the assessment of predic-
tion performance, it is customary to use the normalized mutual information
[452, 454] coefficient

IC(D,M) = I(D,M)
H(D)

(6.29)

with

H(D) = −TP + FN
N

log
[TP + FN

N

]
− TN + FP

N
log

[TN + FP
N

]
(6.30)

or, more briefly expressed, H(D) = −m̄ logm̄ − (1− m̄) log(1− m̄). The nor-
malized mutual information satisfies 0 ≤ IC(D,M) ≤ 1. When IC(D,M) = 0,
then I(D,M) = 0 and the prediction is totally random (D and M are indepen-
dent). When IC(D,M) = 1, then I(D,M) = H(D) = H(M) and the prediction
is perfect. Like the correlation coefficient, the mutual information coefficient
is a global measure rather than a sum of local terms. The mutual informa-
tion is symmetric in FP and FN, but the mutual information coefficient is not
symmetric because of its denominator.

6.7.9 Sensitivity and Specificity

In a two-class prediction case where the output of the prediction algorithm is
continuous, the numbers TP, TN, FP , and FN depend on how the threshold is
selected. Generally, there is a tradeoff between the number of false positives
and the number of false negatives produced by the algorithm.

In a ROC curve (receiver operating characteristics) one may summarize
such results by displaying for threshold values within a certain range the “hit
rate” (sensitivity, TP/(TP + FN)) versus the “false alarm rate” (also known as
false positive rate, FP/(FP + TN). Typically the hit rate increases with the
false alarm rate (see figure 8.10). Alternatively, one can also display the sen-
sitivity (TP/(TP + FN)) versus the specificity (TP/(TP + FP)) in a similar plot
or separately as a function of threshold in two different plots.

While the sensitivity is the probability of correctly predicting a positive
example, the specificity as defined above is the probability that a positive pre-
diction is correct. In medical statistics, the word “specificity” is sometimes
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used in a different sense, meaning the chance of correctly predicting a nega-
tive example: TN/(FP + TN), or 1 minus the false positive rate. We prefer to
refer to this as the sensitivity of the negative category.

If we write x = TP/(TP + FN) for the sensitivity and y = TP/(TP + FP)
for the specificity, then

TP + FP = TP
y

TP + FN = TP
x

TN + FP = N − (TP + FN) = Nx − TP
x

TN + FN = N − (TP + FP) = Ny − TP
y

(6.31)

provided x �= 0 and y �= 0, which is equivalent to TP �= 0, a rather trivial case.
In other words, we just reparameterize (TP , TN, FP , FN) using (TP ,x,y,N).
In this form, it is clear that we can substitute these values in (6.16) to derive,
after some algebra, an expression for the correlation coefficient as a function
of the specificity and the sensitivity:

C(D,M) = Nxy − TP√
(Nx − TP)(Ny − TP). (6.32)

Notice that this expression is entirely symmetric in x and y , i.e. in the speci-
ficity and sensitivity, or equivalently also in FP and FN, the number of false
positives and false negatives. In fact, for a given TP , exchanging FP and FN
is equivalent to exchanging x and y . A similar calculation can be done in or-
der to re-express the mutual information of (6.27) or the mutual information
coefficient of (6.29) in terms of TP , x, y , and N. The mutual information is
entirely symmetric in x and y , or FP and FN (this is not true of the mutual
information coefficient).

6.7.10 Summary

In summary, under the equivalence and independence assumption, if both D
and M are binary, then all the performance information is contained in the
numbers TP , TN, FP , and FN. Any measure of performance using a single
number discards some information. The Hamming distance and the quadratic
distance are identical. These distances, as well as the percentages and the Lp
distances, are based on only two out of the four numbers TP , TN, FP , and FN.
The correlation coefficient and the mutual information coefficient are based
on all four parameters and provide a better summary of performance in this
case. In the continuous case, the recommended measures are the correlation
coefficient and the relative entropy.
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Chapter 7

Hidden Markov Models: The
Theory

7.1 Introduction

In the 1990s, only roughly a third of the newly predicted protein sequences
show convincing similarity to other known sequences [80, 224, 155], using
pairwise comparisons [11, 418]. This situation is even more unfortunate in
the case of new, incomplete sequences or fragments. Large databases of frag-
ments are becoming available as a result of various genome, cDNA, and other
sequencing projects, especially those producing ESTs (expressed sequences
tags) [200]. At the beginning of 1997, approximately half of GenBank con-
sisted of fragment data. Such data cover a substantial fraction, if not all, of
the expressed human genome. It is of course of great interest to recognize and
classify such fragments, and recover any additional useful information.

A promising approach to improve the sensitivity and speed of current
database-searching techniques has been to use consensus models built from
multiple alignments of protein families [23, 52, 250, 334, 41, 38]. Unlike con-
ventional pairwise comparisons, a consensus model can in principle exploit
additional information, such as the position and identity of residues that are
more or less conserved throughout the family, as well as variable insertion and
deletion probabilities. All descriptions of sequence consensus, such as profiles
[226], flexible patterns [52], and blocks [250], can be seen as special cases of
the hidden Markov model (HMM) approach.

HMMs form another useful class of probabilistic graphical models used,
over the past few decades, to model a variety of time series, especially in
speech recognition [359, 439] but also in a number of other areas, such as
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ion channel recordings [48] and optical character recognition [357]. HMMs
have also earlier been applied to problems in computational biology, including
the modeling of coding/noncoding regions in DNA [130], of protein binding
sites in DNA [352], and of protein superfamilies [553] (see also [351]). Only
since the mid-1990s [334, 41], though, have HMMs been applied systemati-
cally to model, align, and analyze entire protein families and DNA regions, in
combination with machine-learning techniques.

HMMs are closely related to, or special cases of, neural networks, stochastic
grammars, and Bayesian networks. In this chapter we introduce HMMs directly
and show how they can be viewed as a generalization of the multiple dice
model of chapter 3. We develop the theory of HMMs—in particular the main
propagation and machine-learning algorithms—along the lines of chapter 4.
The algorithms are used in the following sections where we outline how to ap-
ply HMMs to biological sequences. Specific applications are treated in chapter
8, while relationships to other model classes are left for later chapters.

7.1.1 HMM Definition

A first-order discrete HMM is a stochastic generative model for time series de-
fined by a finite set S of states, a discrete alphabet A of symbols, a probability
transition matrix T = (tji), and a probability emission matrix E = (eiX). The
system randomly evolves from state to state while emitting symbols from the
alphabet. When the system is in a given state i, it has a probability tji of mov-
ing to state j and a probability eiX of emitting symbol X. Thus an HMM can be
visualized by imagining that two different dice are associated with each state:
an emission die and a transition die. The essential first-order Markov assump-
tion of course is that the emissions and transitions depend on the current
state only, and not on the past. Only the symbols emitted by the system are
observable, not the underlying random walk between states; hence the qualifi-
cation “hidden.” The hidden random walks can be viewed as hidden or latent
variables underlying the observations.

As in the case of neural networks, the directed graph associated with
nonzero tji connections is also called the architecture of the HMM. Although
this is not necessary, we will always consider that there are two special states,
the start state and the end state. At time 0, the system is always in the start
state. Alternatively, one can use a distribution over all states at time 0. The
transition and emission probabilities are the parameters of the model. An
equivalent theory can be developed by associating emissions with transitions,
rather than with states. HMMs with continuous alphabets are also possible,
but will not be considered here because of our focus on the discrete aspects
of biological sequences.
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A very simple example of an HMM is given in figure 7.1. In this example, we
can imagine that there are two “DNA dice.” The first die has an emission prob-
ability vector of (e1A = 0.25, e1C = 0.25, e1G = 0.25, e1T = 0.25). The second die
has an emission probability vector of (e2A = 0.1, e2C = 0.1, e2G = 0.1, e2T = 0.7).
The transition probabilities are given in the figure. Suppose that we now ob-
serve a sequence such as ATCCTTTTTTTCA. There are at least three questions
that one can ask immediately: How likely is this sequence for this particular
HMM? (This is the likelihood question.) What is the most probable sequence
of transitions and emissions through the HMM underlying the production of
this particular sequence? (This is the decoding question.) And finally, assum-
ing that the transition and emission parameters are not known with certainty,
how should their values be revised in light of the observed sequence? (This
is the learning question.) We recommend that the reader try to answer these
questions on the simple example above. Precise algorithmic answers for all
three problems in the general case will be given in the following sections. We
now consider different types of HMM architectures for biological applications.

7.1.2 HMMs for Biological Sequences

In biological sequence applications, the main HMM alphabets are of course
the 20-letter amino acid alphabet for proteins and the four-letter nucleotide
alphabet for DNA/RNA problems. Depending on the task, however, a number
of other alphabets can be used, such as a 64-letter alphabet of triplets, a three-
letter alphabet (α, β, coil) for secondary structure, and Cartesian products of
alphabets (see table 6.1). If necessary, a space symbol can be added to any of
these alphabets. In this chapter and chapter 8, we use the protein and DNA
alphabets only.

In the simple HMM example above, there are only two hidden states, with a
fully interconnected architecture between them. In real applications we need
to consider more complex HMM architectures, with many more states and typ-
ically sparser connectivity. The design or selection of an architecture is highly
problem-dependent. In biological sequences, as in speech recognition, the lin-
ear aspects of the sequences are often well captured by the so-called left–right
architectures. An architecture is left–right if it prevents returning to any state
once a transition from that state to any other state has occurred. We first
review the most basic and widely used left–right architecture for biological
sequences, the standard linear architecture (figure 7.2).

To begin with, consider the problem of modeling a family of related se-
quences, such as a family of proteins. As in the application of HMMs to speech
recognition, a family of proteins can be seen as a set of different utterances
of the same word, generated by a common underlying HMM. The standard ar-
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Figure 7.1: A Simple Example of an HMM, with Two States in Addition to the Start and End
States.

chitecture can be seen as a very simple variation of the multiple-die model of
chapter 3. The multiple-die model is in fact a trivial HMM with a linear se-
quence of states, one for each die. Transition probabilities from one state to
the next are all set to 1. The emission probability of each die is associated with
the composition of the family in the corresponding column. The main prob-
lem with such a model, of course, is that there are insertions and deletions:
the sequences in the family in general do not have the same length N. Even
if a gap symbol is added to the die alphabet, a preexisting multiple alignment
is required to determine the emission probabilities of each die. The standard
architecture is a simple but fundamental variation of the simple die model,
where special states for insertions and deletions are added at all possible po-
sitions.

In the standard architecture, in addition to start and end, there are three
other classes of states: the main states, the delete states, and the insert states,
with S = {start,m1, . . . ,mN, i1, . . . , iN+1, d1, . . . , dN, end}. Delete states are
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di

miS E

i i

Figure 7.2: The Standard HMM Architecture. S is the start state, E is the end state, and di,mi,
and ii denote delete, main, and insert states, respectively.

also called gap or skip states. N is the length of the model, typically equal
to the average length of the sequences in the family. The main and insert
states always emit an amino acid symbol, whereas the delete states are mute.
This is of course equivalent to adding a space symbol to the alphabet and forc-
ing the emission of the delete states to be concentrated on this symbol. The
linear sequence of state transitions, start → m1 → m2 . . . → mN → end, is
the backbone of the model. These are the states corresponding to a multiple-
die model. For each main state, corresponding insert and delete states are
needed to model insertions and deletions. More precisely, there is a 1:1 cor-
respondence between main states and delete states, and a 1:1 correspondence
between backbone transitions and insert states. The self-loop on the insert
states allows for multiple insertions at a given site. With an alphabet of size
|A|, the standard architecture has approximately 2N|A| emission parameters
and 9N transition parameters, without taking into account small boundary ef-
fects (the exact numbers are (2N + 1)|A| emissions and 9N + 3 transitions).
Thus, for large N, the number of parameters is of the order of 49N for pro-
tein models and 17N for DNA models. Of course, neglecting boundary effects,
there are also 2N normalization emission constraints and 3N normalization
transition constraints.
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7.2 Prior Information and Initialization

There are a number of ways in which prior information can be incorporated
in the design of an HMM and its parameters. In the following sections we will
give examples of different architectures. Once the architecture is selected, one
can further restrain the freedom of the parameters in some of its portions, if
the corresponding information is available in advance. Examples of such situa-
tions could include highly conserved motifs and hydrophobic regions. Linking
the parameters of different portions is also possible, as in the weight-sharing
procedure of NNs. Because of the multinomial models associated with HMM
emissions and transitions, the natural probabilistic priors on HMM parameters
are Dirichlet distributions (see chapter 2).

7.2.1 Dirichlet Priors on Transitions

In the standard architecture, for the vector of transitions tji out of a state i,
a Dirichlet distribution DαiQi(tji) works well. One can use the same Dirich-
let distribution for all the states of the same type—for instance, for all the
main states, except the last one because of boundary effects. Thus three ba-
sic priors—DαmQm , DαiQi , and DαdQd—can be used for the transitions out of
main, insert, and delete states. The hyperparameters’ αs can be further re-
duced, if desirable, by having αm = αi = αd. Notice that the Dirichlet vectors
Qs are usually not uniform, and are different for each state type. This is be-
cause transitions toward main states are expected to be predominant.

7.2.2 Dirichlet Priors on Emissions

The situation for emissions DαiQi(eiX) is similar. A simple option is to use
the same Dirichlet distribution for all the insert states and all the main states.
The vector Q can be chosen as the uniform vector. Another possibility is to
haveQ equal to the average composition frequency of the training set. In [334]
Dirichlet mixtures are also used.

7.2.3 Initialization

The transition parameters are typically initialized uniformly or at random. In
the standard architecture, uniform initialization without a prior that favors
transitions toward the main states is not, in general, a good idea. Since all
transitions have the same costs, emissions from main states and insert states
also have roughly the same cost. As a result, insert states may end up being
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di

i i

miS E

Figure 7.3: Variation on the Standard HMM Architecture. S is the start state, E is the end state,
and di,mi, and ii denote delete, main, and insert states, respectively.

used very frequently, obviously not a very desirable solution. In [41], this prob-
lem was circumvented by introducing a slightly different architecture (figure
7.3), where main states have a lower fan-out (3) than insert or delete states (4),
and therefore are less costly around the point where transitions out of each
state are uniformly distributed. In a similar way, emissions can be initialized
uniformly, at random, or sometimes even with the average composition. Any
initialization that significantly deviates from uniform can introduce undesir-
able biases if Viterbi learning (see 7.4.3) is used.

Initialization from Multiple Alignments

Finally, it is important to realize that if a multiple alignment of a training set
is available, it can be used to determine the parameters of the correspond-
ing standard architecture, or at least to initialize them prior to learning. In
the latter situation, the hope of course is that by starting closer to the opti-
mal solutions, learning might be faster and/or yield a better solution. From
a multiple alignment, we can assign a main state to any column of the align-
ment that contains less than 50% gaps. A column with more than 50% gaps
is assigned to a corresponding insert state. Delete states are associated with
the gaps in the columns with less than 50% gaps. Emissions of main and in-
sert states can be initialized from the frequency counts of the corresponding
columns, although these need to be regularized (with Dirichlet distributions
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and/or their mixtures) to avoid emission biases associated with 0 counts. A
similar approach can be taken to determine the transition parameters.

7.3 Likelihood and Basic Algorithms

In this section, we study the basic HMM algorithms needed to answer the first
two questions raised above. In particular, we study how to compute the like-
lihood, and the most probable sequence of state transitions and emissions,
associated with an observation sequence. These algorithms are recursive and
can be viewed as forms of dynamic programming or as propagation algorithms
in the directed graph associated with the HMM [439]. All these algorithms are
essential building blocks for the learning algorithms of the following section.
The presence of delete states here slightly complicates the equations.

First, consider the problem of computing the likelihood P(O|w) of a se-
quence O = X1 . . .Xt . . .XT according to an HMM M = M(w) with parameter w.
We define a path π in M to be a sequence of consecutive states of M starting
with the start state and ending with the end state, together with the choice
of an emission letter for each of the emitting states along the path. If the
sequence of emission letters along the path coincides with O, then

P(O,π|w) =
end∏
start

tji
T∏
t=1

eiXt , (7.1)

where the first product is taken over all transitions along the path π , and the
second product over the corresponding emitting states i in π . If the sequence
of emission letters along the path does not coincide with O, then obviously
P(O,π|w) = 0. The likelihood of a sequence can then be expressed by

P(O|w) =
∑
π

P(O,π|w). (7.2)

This expression, however, does not lead to an efficient computation of the
likelihood or its derivatives, because the number of paths in an architecture is
typically exponential. Luckily, there is a more efficient way of organizing the
computation of the likelihood, known as the forward algorithm. All the other
algorithms in this section are similar and can be seen as ways of organizing
calculations using an iterative propagation mechanism through the architec-
ture, in order to avoid looking at all possible hidden paths.

7.3.1 The Forward Algorithm

Let us define
αi(t) = P(St = i,X1 . . .Xt|w), (7.3)
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the probability of being in state i at time t, having observed the letters X1 . . .Xt
in the model M(w). We can initialize

αstart(0) = 1. (7.4)

Without a start state, we would use an initial probability over all states. What
we want to compute is P(O|w) = αend(T). The αi(t) can be computed recur-
sively by simple propagation:

αi(t + 1) =
∑
j∈S

αj(t)tijeiXt+1 =
∑

j∈N−(i)
αj(t)tijeiXt+1 . (7.5)

The neighborhood notation is used again to stress the advantage of general
sparse connectivity. This equation is true for any emitting state. For delete
states, it must be modified slightly

αi(t + 1) =
∑

j∈N−(i)
αj(t + 1)tij . (7.6)

At first sight, (7.5) and (7.6) do not define a proper propagation mechanism
because in (7.6) the time t+ 1 appears on both sides of the equation. It is easy
to see, however, that iterations of (7.5) and (7.6) must converge to a stable set
of values αi(t + 1). This is obvious when there are no directed loops in the
architecture going through delete states only, as in the case of the standard
architecture. In this case (7.6) must be iterated N times at most. But even when
there are loops through delete states in the architecture, (7.6) is in general
convergent, since the propagation of probabilities through a silent loop gives
rise to a geometric series with ratio equal to the product of the transitions
along the loop. This ratio is typically less than 1 (see appendix D for more
details).

A directed path from j to i in an HMM is said to be silent if the only internal
nodes it contains correspond to delete (silent) states. The probability of such
a path is the product of the probabilities of the transitions it contains. We
denote by tDij the probability of moving from j to i silently. Thus tDij is the
sum of the probabilities of all the silent paths joining j to i. In the standard
architecture, tDij is trivial to compute since there is at most one silent path
from j to i. With this notation, the forward propagation can also be expressed
by first computing αi(t+1) for all the emitting states, using (7.5). The forward
variables for the delete states can then be computed by

αi(t + 1) =
∑
j∈E

αj(t + 1)tDij , (7.7)

where E denotes the set of all emitting states. Note that the propagation in
(7.5) and (7.6) can be seen as the propagation in a linear neural network with
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T layers, one per time step, and M units in each layer, one for each HMM state.
All the units are linear. The unit corresponding to emitting states i in layer
t + 1 has a linear transfer function with slope eiXt+1 . In this sense, the com-
putation of likelihoods in an HMM is equivalent to forward propagation in a
linear network with roughly N layers and |S| units per layer. The presence of
delete states adds connections within a layer. In the case of the standard archi-
tecture, in spite of these intralayer connections, the NN architecture remains
feed-forward: hence the simple convergence of (7.6) during propagation. Be-
cause the algorithm consists essentially in updating T layers of M units each,
the forward algorithm scales as O(MT) operations. In the standard architec-
ture, both M and T are of the same order as N (M ≈ 3N), so the forward
propagation scales as O(N2) operations.

Finally, one should also observe that using the forward variables as HMMs
can be viewed as a dynamic mixture model. This is because the probability of
emitting the letter Xt can be decomposed as

∑
i αi(t)eiXt .

7.3.2 The Backward Algorithm

As in the case of neural networks, during learning we will need to propagate
probabilities backward. The backward algorithm is the reverse of the forward
algorithm. Let us define the backward variables by

βi(t) = P(Xt+1 . . .XT |St = i,w), (7.8)

the probability of being in state i at time t, with a partial observation of the
sequence from Xt+1 until the end. Obviously,

βend(T) = 1. (7.9)

The propagation equation to compute the βs recursively is given by

βi(t) =
∑

j∈N+(i)
βj(t + 1)tjiejXt+1 (7.10)

for the emitting states. For the delete states,

βi(t) =
∑

j∈N+(i)
βj(t)tji. (7.11)

After updating the emitting states, this can be rewritten as

βi(t) =
∑
j∈E

βj(t)tDji. (7.12)
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The remarks made above about the forward algorithm also apply to the back-
ward algorithm. In particular, in the standard architecture, the complexity of
the backward algorithm also scales as O(N2).

Using the forward and backward variables, we can easily compute the prob-
ability of being in state i at time t, given the observation sequence O and the
model w, by

γi(t) = P(St = i|O,w) = αi(t)βi(t)
P(O|w) = αi(t)βi(t)∑

j∈S αj(t)βj(t)
, (7.13)

or the probability γji(t) of using the i→ j transition at time t by

P(St+1 = j, St = i|O,w) =
{αi(t)tjiejXt+1βj(t + 1)/P(O|w) if j ∈ E
αi(t)tjiβj(t)/P(O|w) if j ∈ D (7.14)

where D represents the set of delete states. Obviously, we also have

γi(t) = P(St = i|O,w) =
∑
j∈S

γji(t). (7.15)

By maximizing γi(t) we can find the most likely state at time t. In the decoding
question, however, we are interested in the most likely path. The most likely
path will also be useful for learning and for aligning sequences to the model.
The most probable path can be computed using the so-called Viterbi algorithm,
which is another application of dynamic programming and, in essence, is the
same algorithm one uses for pairwise alignments. It is also very similar to the
forward algorithm.

7.3.3 The Viterbi Algorithm

For the Viterbi algorithm, we need to define the variables

δi(t) =max
πi(t)

P(πi(t)|w), (7.16)

where πi(t) represents a “prefix” path, with emissions X1 . . .Xt ending in state
i. Thus, δi(t) is the probability associated with the most probable path that
accounts for the first t symbols of O and terminates in state i. These vari-
ables can be updated using a propagation mechanism similar to the forward
algorithm, where sums are replaced by maximization operations:

δi(t + 1) = [max
j
δj(t)tij]eiXt+1 (7.17)

for the emitting states, and

δi(t + 1) = [max
j
δj(t + 1)tij] (7.18)
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for the delete states. The convergence is even more obvious than in the case
of the forward algorithm; a cycle of delete states can never belong to an opti-
mal path, because it decreases the overall probability without producing any
letters. In order to recover the optimal path itself one must at each time keep
track of the previous optimal state. The resulting Viterbi path will be used
below both for learning and multiple alignments.

7.3.4 Computing Expectations

For a given set of parameters w and a given sequence O, P(π|O,w) defines
a posterior probability distribution Q(π) on the hidden variables, that is, the
paths’ πs. We have seen in chapters 3 and 4 that Q plays an important role. In
particular, during learning, we will need to compute expectations with respect
to Q, such as the expected number of times the state i is visited, the expected
number of times the letter X is emitted from i, and the expected number of
times the i → j transition is used. Because of the factorial nature of HMMs, Q
is easy to compute and the associated expectations can be obtained from the
forward–backward variables. Let

• n(i,π,O) be the number of times i is visited, given π and O;

• n(i,X, π,O) be the number of times the letter X is emitted from i, given
π and O;

• n(j, i,π,O) be the number of times the i→ j transition is used, given π
and O.

Then the respective expectations are given by

ni =
∑
π
n(i,π,O)P(π|O,w) =

T∑
t=0

γi(t), (7.19)

niX =
∑
π
n(i,X, π,O)P(π|O,w) =

T∑
t=0,Xt=X

γi(t) (7.20)

and, similarly, for the transitions

nji =
∑
π
n(j, i,π,O)P(π|O,w) =

T∑
t=0

γji(t). (7.21)

We now have all the tools in place to tackle the HMM learning problem.
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7.4 Learning Algorithms

Various algorithms are available for HMM training, including the Baum–Welch
or EM (expectation maximization) algorithm, as well as different forms of
gradient-descent and other GEM (generalized EM) [147, 439, 39] algorithms.
Obviously, one could also use simulated annealing, although this remains
impractical for large models. As usual, we concentrate on the first level of
Bayesian inference: finding the optimal parameters by MAP estimation. We
begin with ML estimation, concentrating on emission parameters; the calcula-
tions for transition parameters are similar. We also assume first that the data
consist of a single sequence O. For each learning algorithm, we thus derive
ML online learning equations first. We then briefly indicate how these equa-
tions should be modified for batch learning with multiple sequences and when
priors are included (MAP). In the case of K training sequences, these can be
considered as independent and the overall likelihood is equal to the product
of the individual likelihoods. In the case of HMMs, higher levels of Bayesian in-
ference have been used very little so far, even less than with neural networks.
These will be discussed only very briefly.

Consider again the likelihood P(O|w) = ∑
π P(O,π|w). In ML, we would

like to optimize the Lagrangian

L = − log P(O|w)−
∑
i∈E
λi(1−

∑
X

eiX)−
∑
i∈S
µi(1−

∑
j
tji), (7.22)

where the λs and µs are positive Lagrange multipliers. From (7.1), we have

∂P(O,π|w)
∂eiX

= n(i,X, π,O)
eiX

P(O,π|w). (7.23)

By setting the partial derivatives of the Lagrangian to 0, at the optimum we
must have

λieiX =
∑
π
n(i,X, π,O)Q(π) = niX, (7.24)

and similarly for transition parameters. Recall that Q is the posterior proba-
bility P(π|O,w). By summing over all alphabet letters, we find

λi =
∑
π

∑
X

n(i,X, π,O)Q(π) =
∑
π
n(i,π,O)Q(π) = ni. (7.25)

Thus, at the optimum, we must have

eiX =
∑
π n(i,X, π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑
π P(π|O,w)n(i,X, π,O)∑
π P(π|O,w)n(i,π,O) . (7.26)
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The ML equations cannot be solved directly because in (7.26) the posterior
distribution Q depends on the values of eiX. However, (7.26) suggests a simple
iterative algorithm whereby Q is first estimated as Q(π) = P(π|O,w), and
then the parameters are updated using (7.26). It turns out that this is exactly
the EM algorithm for HMMs.

7.4.1 EM Algorithm (Baum–Welch)

Recall that in the EM algorithm we define the energy over hidden configu-
rations, f(π) = − log P(O,π|w). The EM algorithm can be defined as an
iterative double minimization process of the function (free energy at tem-
perature 1) F(w,Q) = EQ(f) − H (Q) with respect first to Q and then to
w. The first minimization step yields the posterior Q(π) = P(π|O,w) =
P(π,O|w)/P(O|w), which we know how to calculate. For the second mini-
mization step, we must minimize F , with respect to w, under the probability
normalization constraints. Since the entropy term is independent of w, we
must finally minimize the Lagrangian

L = EQ(f)−
∑
i∈E
λi(1−

∑
X

eiX)+
∑
i∈S
µi(1−

∑
j
tji), (7.27)

with Q(π) = P(π|O,w) fixed. Using (7.23), we get

λieiX =
∑
π
n(i,X, π,O)Q(π) = niX (7.28)

and, by summing over all alphabet letters,

λi =
∑
π

∑
X

n(i,X, π,O)Q(π) =
∑
π
n(i,π,O)Q(π) = ni. (7.29)

These equations are identical to (7.24) and (7.25). It can be checked that they
correspond to a minimum, so that the EM reestimation equations are

e+iX =
∑
π n(i,X, π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑T
t=0,Xt=X γi(t)∑T
t=0 γi(t)

= niX
ni
. (7.30)

In the case of transition parameters, one similarly obtains

t+ji =
∑
π n(j, i,π,O)Q(π)∑
π n(i,π,O)Q(π)

=
∑T
t=0 γji(t)∑T
t=0 γi(t)

= nji
ni
. (7.31)

Thus the EM equations are implemented using the forward and backward pro-
cedures. In fact, the EM algorithm for HMMs is sometimes called the forward–
backward algorithm. e+iX is the expected number of times in state i observing
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symbol X, divided by the expected number of times in state i, and t+ji is the
expected number of transitions from i to j, divided by the expected number
of transitions from state i. These are exactly the same iteration equations
obtained by setting the derivatives of the Lagrangian associated with the like-
lihood (7.22) to 0. This is a particular property of HMMs and factorial distribu-
tions, and not a general rule.

In the case of K sequences O1, . . . ,OK , a similar calculation shows that we
have

e+iX =
∑K
j=1

∑
π n(i,X, π,Oj)P(π|Oj,w)∑K

j=1
∑
π n(i,π,Oj)P(π|Oj,w)

. (7.32)

It should also be clear how to modify the present equations in the case of
MAP estimation by EM. Each training sequence requires one forward and one
backward propagation. Thus the EM algorithm scales as O(KN2) operations.

The batch EM algorithm is widely used for HMMs. It must be noted, how-
ever, that the online use of the EM algorithm can be problematic. This is be-
cause the EM algorithm, unlike gradient descent, does not have a learning rate.
The EM algorithm can take large steps in the descent direction generated by
each training example in isolation, converging toward poor local minima of E .
This “carpet-jumping” effect can be avoided with gradient-descent learning, as
long as the learning rate is small.

7.4.2 Gradient Descent

The gradient-descent equations on the negative log-likelihood can be derived
by exploiting the relationship between HMMs and NNs, and using the back-
propagation equations. Here we derive them directly. Instead of using the
Lagrangian with the normalization constraints, as above, we use an equiva-
lent useful reparameterization. We reparameterize the HMM using normalized
exponentials, in the form

eiX = ewiX∑
Y ewiY

and tji = ewji∑
k ewki

, (7.33)

with wiX and wij as the new variables. This reparameterization has two ad-
vantages: (1) modification of the ws automatically preserves normalization
constraints on emission and transition distributions; (2) transition and emis-
sion probabilities can never reach the value 0. A simple calculation gives

∂eiX
∂wiX

= eiX(1− eiX) and
∂eiX
∂wiY

= −eiXeiY, (7.34)



180 Hidden Markov Models: The Theory

and similarly for the transition parameters. By the chain rule,

∂ log P(O|w)
wiX

=
∑
Y

∂ log P(O|w)
eiY

∂eiY
wiX

. (7.35)

Therefore, applying (7.2), (7.23), and (7.33) to (7.35), the online gradient-
descent equations on the negative log-likelihood are

∆wiX = η(niX −nieiX) and ∆wji = η(nji −nitji), (7.36)

where η is the learning rate. niX and nji are again the expected counts derived
by the forward–backward procedure for each single sequence if the algorithm
is to be used online. Batch gradient-descent equations can easily be derived by
summing over all training sequences. For MAP estimation, one needs to add
the derivative of the log prior, with respect to the ws, to the online gradient-
descent learning equations. For instance, a Gaussian prior on each parameter
would add a weight decay term to (7.36).

Just like EM, the gradient-descent equations require one forward and one
backward propagation. Therefore O(KN2) operations must be performed per
training cycle. Some care must be taken in the implementation, however, to
minimize the overhead introduced by the normalized exponential parameter-
ization. Unlike EM, online gradient descent is a smooth algorithm. A number
of other related smooth algorithms are discussed in [39]. A useful aspect of
smooth algorithms is that unlearning is easy. If a sequence happens to be in
the training set by error (that is, if it does not belong to the family being mod-
eled), it is easy to remove its antagonistic impact from the model by reversing
the effect of the gradient-descent equations.

7.4.3 Viterbi Learning

Both the EM and the gradient-descent update equations are based on the
calculation of expectations over all possible hidden paths. The general Viterbi
learning idea is to replace calculations involving all possible paths with cal-
culations involving only a small number of likely paths, typically only the
most likely one, associated with each sequence. Thus an emission count
such as n(i,X, π,O) averaged over all paths is replaced by a single number
n(i,X, π∗(O)), the number of times X is emitted from i along the most proba-
ble path π∗(O). In the standard architecture, n(i,X, π∗(O)) is always 0 or 1,
except for the insert states, where it can occasionally be higher as a result of
repeated insertions of the same letter. For this reason, a plain online Viterbi
EM makes little sense because parameters would mostly be updated to 0 or 1.
For online Viterbi gradient descent, at each step along a Viterbi path, and for
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any state i on the path, the parameters of the model are updated according to

∆wiX = η(EiX − eiX) and ∆wji = η(Tji − tji). (7.37)

EiX = 1 (resp. Tji = 1) if the emission of X from i (resp. i→ j transition) is used,
and 0 otherwise. The new parameters are therefore updated incrementally,
using the discrepancy between the frequencies induced by the training data
and the probability parameters of the model.

In the literature, Viterbi learning is sometimes presented as a quick ap-
proximation to the corresponding non-Viterbi version. The speed advantage
is only relatively minor, and of the order of a factor of 2, since computing
π∗(O) does not require the backward propagation. As far as approximations
are concerned, Viterbi learning is somewhat crude, since sequence likelihoods
in general are not sharply peaked around a single optimal path. Thus it is not
uncommon to observe significant differences between Viterbi and non-Viterbi
learning both during the training phase and at the end. In our experience, we
have often observed that Viterbi learning yields good results when modeling
protein families, but not when modeling general DNA elements, such as exon
or promoter regions, where non-Viterbi learning performs better. This proba-
bly is partially due to the fact that optimal paths play a particular role in the
case of proteins.

In fact, a complementary view of Viterbi learning is that it constitutes an
algorithm per se, trying to optimize a different objective function. We can
define a new probability measure PV , and hence a new model (hidden Viterbi
model) on the space of sequences, by

PV(O|w) = P(π∗(O)|w)∑
O P(π∗(O)|w). (7.38)

Viterbi learning then is an attempt at minimizing

E =
K∑
k=1

− logPV(Ok|w). (7.39)

It is important to note that as the parameters w evolve, the optimal paths
π∗ can change abruptly, and therefore E can be discontinuous. Obviously,
regularizer terms can be added to (7.39) for a Viterbi version of MAP.

7.4.4 Other Aspects

As usual, many other issues can be raised regarding learning improvements,
such as balancing the training set [157, 337], varying the learning rate, or using
second-order information by estimating the Hessian of the likelihood. These
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issues are discussed in the literature and cannot be covered here in detail
for lack of space. We wish, however, briefly to discuss scaling, architecture
selection or learning, and ambiguous symbols, since these are of particular
practical importance.

Scaling

The probabilities P(π|O,w) are typically very small, since they are equal to
the product of many transition and emission probabilities, each less than 1.
For most models, this will easily exceed the precision of any machine, even
in double precision. Therefore, in the implementation of the learning algo-
rithms, and in particular of the forward and backward procedures, one is faced
with precision issues. These can be addressed by using a scaling procedure,
where forward and backward variables are scaled during the propagation in
order to avoid underflow. The scaling procedure is somewhat technical and
is described in appendix D. In Viterbi learning, the precision problem is easily
addressed by working with the logarithm of the path probabilities.

Learning the architecture

A natural question to raise is whether the HMM architecture itself can be
learned from the data. Algorithms for learning HMM architectures have in-
deed been developed for general HMMs—for instance, in [504]—and even in
the context of biological sequences [193]. The basic idea in [504] is to start
with a very complex model, essentially one state per data letter, and then iter-
atively merge states. The choice of states to merge and the stopping criterion
are guided by an evaluation of the posterior probability. In [193], on the other
hand, the starting point is a small, fully interconnected HMM. The algorithm
in this case proceeds by iteratively deleting transitions with very low probabil-
ity and duplicating the most connected states, until the likelihood or posterior
reaches a sufficient level. In both cases, good results are reported on small test
cases associated with HMMs having fewer than 50 states. While these methods
may be useful in some instances, they are slow and unlikely to be practical,
on current computers, for most of the large HMMs envisioned in chapter 8
without leveraging any available prior knowledge. The number of all possible
architectures with |S| states is of course very large. A much more tractable
special case of architecture learning is whether the length N of the standard
HMM architecture can be learned.
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Adaptable model length

The approach described so far for the standard architecture is to fix N to
the average length of the sequences being modeled. In practice, this simple
approach seems to work quite well. Naturally, after training, if such a value of
N does not seem to be optimal, a new value can be selected and the training
procedure restarted.

In [334] a “surgery” algorithm is presented for the dynamic adjustment of
the HMM length during learning. The idea is to add or remove states wher-
ever needed along the architecture, while respecting the overall connectivity
pattern. If an insert state is used by more than 50% of the family of sequences
being modeled, meaning that the insert state is present in more than 50%
of the corresponding Viterbi paths, then a new main state is created at the
corresponding position, together with corresponding new delete and insert
states. The new state emission and transition probabilities can be initialized
uniformly. Likewise, if a delete state is used by more than 50% of the se-
quences, it can be removed together with the corresponding main and insert
states. The rest of the architecture is left untouched, and the training pro-
ceeds. Although this approach has not been shown to converge always to a
stable length, in practice it seems to do so.

Architectural variations

As already pointed out, a number of other architectures, often related to
the standard architecture, have been used in molecular biology applications.
These include the multiple HMM architecture (figure 8.5) for classification, and
the loop (figure 8.16) and wheel (figure 8.17) architectures for periodic pat-
terns. The standard architecture has also been used to model protein sec-
ondary structure [187] and build libraries of secondary structure consensus
patterns for proteins with similar fold and function. Several other architec-
tures have been developed for gene finding both in prokaryotes [336] and
eukaryotes [107]. Examples of specific applications will be given in chapter
8.

Ambiguous symbols

Because sequencing techniques are not perfect, ambiguous symbols are occa-
sionally present. For instance, X represents A or C or G or T in DNA sequences,
and B represents asparagine or aspartic acid in protein sequences. Such sym-
bols can easily be handled in a number of ways in conjunction with HMMs.
In database searches, it is prudent practice to use the ”benefit of the doubt”
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approach, in which an ambiguous symbol is replaced by its most likely alterna-
tive in the computation of sequence likelihoods and Viterbi paths. Additional
care must be used with sequences having an unusually high proportion of am-
biguous symbols, since these are likely to generate false positive responses.

7.5 Applications of HMMs: General Aspects

Regardless of the design and training method, once an HMM has been suc-
cessfully derived from a family of sequences, it can be used in a number of
different tasks, including

1. Multiple alignments

2. Database mining and classification of sequences and fragments

3. Structural analysis and pattern discovery.

All these tasks are based on the computation, for any given sequence, of its
probability according to the model as well as its most likely associated path,
and on the analysis of the model structure itself. In most cases, HMMs have
performed well on all tasks, yielding, for example, multiple alignments that
are comparable with those derived by human experts. Specific examples and
details on proteins and DNA applications of HMMs will be given in chapter 8.
HMM libraries of models can also be combined in a hierarchical and modular
fashion to yield increasingly refined probabilistic models of sequence space
regions. HMMs could in principle be used in generative mode also to produce
de novo sequences having a high likelihood with respect to a target family,
although this property has not been exploited.

7.5.1 Multiple Alignments

Computing the Viterbi path of a sequence is also called, for obvious reasons,
“aligning a sequence to the model.” Multiple alignments can be derived, in
an efficient way, by aligning the Viterbi paths to each other [334, 41]. While
training a model may sometimes be lengthy, it can be done offline. Once the
training phase is completed, the multiple alignment of K sequences requires
the computation of K Viterbi paths, and therefore scales only as O(KN2). This
is linear in K, and should be contrasted with the O(NK) scaling of multidi-
mensional dynamic programming alignment, which is exponential in K. The
multiple alignments derived by HMMs are in some sense richer than conven-
tional alignments. Indeed, consider a conventional alignment of two sequences
and assume that, at a given position, the second sequence has a gap with re-
spect to the first sequence. This gap could be the result of a deletion in the
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second sequence or an insertion in the first sequence. These are two distinct
sets of Viterbi paths in an HMM that are not distinguished in a conventional
alignment.

Another way of looking at this issue is to consider that a conventional mul-
tiple alignment could be derived by training an HMM architecture that is sim-
ilar to the standard architecture, but where the length of the model is fixed
to the length of the longest sequence being aligned and all insert states are
removed, leaving only main and delete states. Thus, all the Viterbi paths con-
sist only of main-state emissions or gaps with respect to main states. But in
any case, it should be clear that the multiple alignments derived by an HMM
with both insert and delete states are potentially richer and in fact should be
plotted in three dimensions, rather than the two used by conventional mul-
tiple alignments (the third dimension being reserved for emissions occurring
on HMM insert states). Because this is both graphically difficult and unconven-
tional, HMM alignments are still plotted in two dimensions like conventional
ones. Lowercase letters are then often reserved for letters produced by HMM
insert states.

The insert and delete states of an HMM represent formal operations on se-
quences. One important question is whether and how they can be related to
evolutionary events. This issue is also related, of course, to the construction of
phylogenetic trees, and their relation to HMMs and multiple alignments. The
standard architecture by itself does not provide a good probabilistic model of
the evolutionary process because it lacks the required tree structure as well
as a clear notion of substitution (in addition to insertion and deletion). Proba-
bilistic models of evolution are addressed in chapter 10.

The reader should perhaps be reminded one more time that the treatment
of HMM multiple alignments we have just presented is based on a single HMM,
and therefore corresponds only to the first step of a full Bayesian treatment.
Even for a simple question, such as whether two amino acids in two different
sequences should be aligned to each other, a full Bayesian treatment would
require integration of the answer across all HMMs with respect to the proper
posterior probability measure. To the best of our knowledge, such integrals
have not been computed in the case of HMMs for biological sequences (but see
[583]). It is difficult to guess whether much could be gained through such a
computationally intensive extension of current practice.

Finally, HMMs could also be used in conjunction with substitution matrices
[27]. HMM emission distributions could be used to calculate substitution ma-
trices, and substitution matrices could be used to influence HMMs during or
after training. In the case of large training sets, one might expect that most
substitution information is already present in the data itself, and no major
gains would be derived from an external infusion of such knowledge.
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7.5.2 Database Mining and Classification

Given a trained model, the likelihood of any given sequence (as well as the
likelihood of the associated Viterbi path) can be computed. These scores can
be used in discrimination tests and in database searches [334, 38] to separate
sequences associated with the training family from the rest. This is applicable
to both complete sequences and fragments [42]. One important aspect to be
examined in chapter 8 is that such scores must be calibrated as a function of
sequence length.

HMMs can also be used in classification problems, for instance, across pro-
tein families or across subfamilies of a single protein family. This can be done
by training a model for each class, if class-specific training sets are available.
We have used this approach to build two HMMs that can reliably discriminate
between tyrosine and serine/threonine kinase subfamilies. Otherwise, unsu-
pervised algorithms related to clustering can be used in combination with
HMMs to generate classifications. An example here is the discrimination of
globin subfamilies (see [334] and chapter 8). It is believed that the total num-
ber of protein superfamilies is relatively small, on the order of 1000 [127, 93].
A global protein classification system, with roughly one HMM per family, is be-
coming a feasible goal, from both an algorithmic and a computational stand-
point. Global classification projects of this sort are currently under way, and
should become useful auxiliary tools in a number of tasks, such as gene find-
ing, protein classification, and structure/function prediction (see [497]).

7.5.3 Structural Analysis and Pattern Discovery

Information can also be derived, and new patterns discovered, by examining
the structure of a trained HMM. The parameters of an HMM can be studied in
the same way as the connections of an NN. High emission or transition prob-
abilities are usually associated with conserved regions or consensus patterns
that may have structural/functional significance. One convenient way of de-
tecting such patterns is to plot the entropy of the emission distributions along
the backbone of the model. Any other function of position, such as hydropho-
bicity or bendability, can also be averaged and plotted using the HMM proba-
bilities. Patterns that are characteristic of a given family, such as features of
secondary structure in proteins (hydrophobicity in alpha-helices) and regions
of high bendability in DNA, are often easier to detect in such plots. This is
because the variability of individual sequences is smoothed out by the expec-
tations. There are other patterns, such as periodicities, that can be revealed by
analyzing the structure of a model. The initial weak detection of such a pat-
tern with the standard architecture can guide the design of more specialized
architectures, such as wheel and loop architectures, to enhance the periodic
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signal. The ability to detect weak patterns from raw unaligned data is a very
useful feature of HMMs. Several examples will be given in chapter 8.
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Chapter 8

Hidden Markov Models:
Applications

8.1 Protein Applications

In the case of proteins, HMMs have been successfully applied to many fam-
ilies, such as globins, immunoglobulins, kinases, and G-protein-coupled re-
ceptors (see, e.g., [334, 41, 38]). HMMs have also been used to model sec-
ondary structure elements, such as alpha-helices, as well as secondary struc-
ture consensus patterns of protein superfamilies [187]. In fact, by the end
of 1997, HMM data bases of protein families (Pfam) [497] and protein family
secondary structures (FORESST) [187] became available. Multiple alignments
derived from such HMMs have been reported and discussed in the literature.
Large multiple alignments are typically too bulky to be reproduced here. But
in most cases, HMM alignments are found to be very good, within the limits of
variability found in multiple alignments produced by human experts resulting
from diverse degrees of emphasis on structural or phylogenetic information.
In the rest of this first half of the chapter, we concentrate on the application
of HMMs to a specific protein family, the G-protein-coupled receptors (GCRs
or GPCRs), along the lines of [38, 42]. Additional details can be found in these
references.

8.1.1 G-Protein-Coupled Receptors

G-protein-coupled receptors are a rich family of transmembrane proteins ca-
pable of transducing a variety of extracellular signals carried by hormones,
neurotransmitters, odorants, and light (see [436, 325, 508, 227, 552] for recent

189



190 Hidden Markov Models: Applications

reviews). Although the detailed biophysical mechanisms underlying the trans-
duction have not been worked out for all members of the family, in most cases
stimulation of the receptor leads to the activation of a guanine nucleotide-
binding (G) protein [402]. All the receptors in the family are believed to have
similar structure, characterized by seven hydrophobic membrane-spanning
alpha-helices. The seven transmembrane regions are connected by three extra-
cellular and three intracellular loops. The amino termini are extracellular and
often glycosylated, whereas the carboxyl termini are cytoplasmic and usually
phosphorylated. The exact three-dimensional packing of the helices, and more
generally the complete tertiary structure, are only partially known [47, 420].

The family is usually divided into subclasses on the basis of transmitter
types, such as muscarinic receptors, catecholamine receptors, odorant recep-
tors, and so forth. From a methodological standpoint, the GPCR family is par-
ticularly challenging. Its members have very variable lengths and, on average,
are fairly long: the length of known GPCRs varies from roughly 200 to 1200
amino acids. The family is highly variable and some of its members have less
than 20% residues in common.

8.1.2 Structural Properties

In [38], 142 GPCR sequences extracted from the PROSITE database [23] were
used to train an HMM architecture of length N = 430, the average length of the
training sequences, using on-line Viterbi learning during 12 cycles of iterations
through the entire training set.

As an example of a structural property, the entropy of the emission dis-
tribution of the main states of the corresponding model is given in figure 8.1.
The amplitude profile of the entropy contains seven major oscillations directly
related to the seven transmembrane domains. To a first approximation, the
hydrophobic domains tend to be less variable, and therefore associated with
regions of lower entropy. This structural feature was discovered by the HMM
without any prior knowledge of alpha-helices or hydrophobicity.

8.1.3 Raw Score Statistics

To test the discrimination abilities of the model, 1600 random sequences were
generated with the same average composition as the GCPRs in the training set,
with lengths 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 1000 (100
sequences at each length), and 1500 and 2000 (200 sequences at each length).
For any sequence, random or not, its raw score according to the model is
calculated. Here, the raw score of a sequence O is the negative log-likelihood
of the corresponding Viterbi path. The raw scores of all the random sequences
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Figure 8.1: Entropy Profile of the Emission Probability Distributions Associated with the Main
States of the HMM After 12 Cycles of Training.

are plotted in figure 8.2, together with the scores of the GPCRs in the training
set and the scores of all the sequences in the SWISS-PROT database.

The model clearly discriminates random sequences with similar average
composition from true GPCRs. Consistent with previous experiments [41, 334],
the scores of the random sequences and of the SWISS-PROT sequences cluster
along two similar lines. The clustering along a line indicates that the cost of
adding one amino acid is roughly constant on average. The linearity is not pre-
served for very short sequences, since these can have more irregular Viterbi
paths. For very long sequences (above model length) the linearity becomes in-
creasingly precise. This is because the Viterbi paths of very long sequences,
with a fixed average composition, must rely heavily on insert states and in fact
are forced to loop many times in a particular insert state that becomes predom-
inant as the length goes to infinity. The predominant insert state is the most
cost-effective one. It is easy to see that the cost-effectiveness of an insert state
k depends equally on two factors: its self-transition probability tkk and the
cross-entropy between its emission probability vector ekX and the fixed prob-
ability distribution associated with the sequences under consideration. More
precisely, if we look at the scores of long random sequences generated using
a fixed source P = (pX) as a function of sequence length, the corresponding
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Figure 8.2: Scores (Negative Log-likelihoods of Optimal Viterbi Paths). Represented sequences
consist of 142 GPCR training sequences, all sequences from the SWISS-PROT database of length
less than or equal to 2000, and 220 randomly generated sequences with same average compo-
sition as the GPCRs of length 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800 (20 at each
length). The regression line was obtained from the 220 random sequences.

scores cluster along a regression line with slope

min
k
[− log tkk −

∑
X

pX log ekX]. (8.1)

Furthermore, for a large fixed length l, the scores are approximately normally
distributed (Central Limit Theorem) with variance

l [EP(log2 ekX)− EP (log ekX)] = l VarP [log ekX]. (8.2)

In particular, the standard deviation of the scores increases as the square root
of the length l. Proof of these results and additional details can be found in
[38].
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Random Number of Empirical Predicted Empirical Predicted
sequence sequences average AS SD SD
length l score (AS) 3.038l+ 122.11 0.66

√
l

300 100 1041.4 1033.5 13.24 11.43
350 100 1187.1 1185.4 13.12 12.34
400 100 1337.6 1337.3 12.50 13.20
450 100 1487.6 1489.2 16.85 14.00
500 100 1638.5 1641.1 13.74 14.75
550 100 1790.3 1793.0 15.26 15.47
600 100 1944.4 1944.9 16.70 16.16
650 100 2093.3 2096.8 16.54 16.82
700 100 2250.6 2248.7 18.65 17.46
750 100 2397.9 2400.6 16.96 18.07
800 100 2552.5 2552.5 19.66 18.66

1000 100 3160.2 3160.1 21.62 20.87
1500 200 4678.9 4679.1 25.51 25.56
2000 200 6199.1 6198.1 29.59 29.51

Table 8.1: Statistics of the Scores of Randomly Generated Sequences with Similar Average Com-
position as the GPCRs (8.2).

The formula derived for the slope is true asymptotically and does not nec-
essarily apply for relatively small lengths, although this is the case for the
present model. For the model under consideration, the optimal insert state for
average composition identical to GPCRs is insert state 20. The equation of the
empirical regression line is y = 3.038l+122.11, whereas the approximation in
(8.1) yields a slope prediction of 3.039. From the estimate in (8.2), the standard
deviation should increase as σ ≈ 0.66

√
l. An empirical regression of the stan-

dard deviation on the square root of the length gives σ ≈ 0.63
√
l+1.22. There

is good agreement between the theoretical estimates and the empirical results,
as can be seen in table 8.1. Generally, of course, the quality of the fit improves
with the length of the sequences, and this is most evident for the standard
deviation. In the present case, however, (8.1) and (8.2) are quite accurate even
for relatively short sequences, with length comparable to or even less than the
length of the model. Similar results are obtained if we use a different random
source based on the average composition of the SWISS-PROT sequences.
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8.1.4 Score Normalization, Database Searches, and Discrimination
Tests

Having done this statistical analysis, we can now address the obvious question
of how to conduct discrimination tests, that is, how to decide algorithmically
whether a sequence belongs to the GPCR family or not. Clearly, one would like
to use the scores produced by the model to discriminate between GPCR and
non-GPCR sequences. However, the raw scores cannot be used directly because
(a) the scores tend to grow linearly with the length and (b) the dispersion of
the scores varies with the length and, at least in the case of long, randomly
generated sequences, increases in proportion to the square root of the length.
Therefore the raw scores need to be centered and scaled first.

This normalization procedure can be done in several ways. For centering,
one can use empirical averages calculated at each length, or averages derived
from empirical regression lines, or average estimates derived from (8.1) and
(8.2). Depending on the final goal, the base level can be calculated with re-
spect to random sequences of similar composition or with respect to an actual
database, such as SWISS-PROT. In the present case, the two are similar but not
identical. For scaling, one can use empirical standard deviations or theoreti-
cal estimates and these can be calculated again on different sources such as
SWISS-PROT or random sequences of similar composition. Each method has
its advantages and drawbacks, and in practical situations one may try several
of them. In general, empirical estimates may be more accurate but also more
costly, especially for long sequences, since the calculation of the correspond-
ing scores grows with the square of the length O(l2).

When using an actual database for centering or scaling, problems can arise
if few sequences are present in the database from a given length interval of
interest; it also may not be possible to remove the sequences belonging to
the family being modeled from the database if these are not known a priori.
This is particularly dangerous in the estimation of standard deviations. Here,
it may be necessary to use an iterative algorithm where at each step a new
standard deviation is calculated by ignoring the sequences in the database
that are detected as members of the family at the corresponding step. The
new standard deviation is used to generate a new set of normalized scores, as
well as a new set of putative members of the family. Another general problem
is that of short sequences, which often behave differently from very long ones.
In certain cases, it may be practical to use a different normalization procedure
for short sequences. Finally, in the case of an HMM library, a fixed set of
randomly generated sequences, with the same average composition as SWISS-
PROT, could be used across different models.

In the GPCR example, for any sequence O of length l, we use the normalized
score ES(O) based on the residual with respect to the empirical regression
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line of the random sequences of similar average composition, divided by the
approximate standard deviation derived from (8.2):

ES(O) = [3.038l+ 122.11−E(O)]
0.66

√
l

, (8.3)

where E(O) is the negative log-likelihood of the Viterbi path. One obvious is-
sue is the setting of the detection threshold. Here, the smallest score on the
training set is 16.03 for the sequence labeled UK33_HCMVA. This low score is
isolated because there are no other scores smaller than 18. Thus the thresh-
old can be set at 16 or a little higher. By removing very long sequences ex-
ceeding the maximal GPCR length as well as sequences containing ambiguous
amino acids, the search algorithm presented here yields no false negatives and
two false positives (threshold 16) or one false negative and no false positives
(threshold 18). At short lengths (below the length of the model), (8.2) is not
necessarily a good approximation, so that it may be worthwhile to try a mixed
scheme where a normalization factor is calculated empirically at short lengths
(l < N) and (8.2) is used for larger lengths (l > N). Finally, thresholds may be
set using the fact that the extreme score of a set of random sequences of fixed
length follows an extreme value distribution [550].

8.1.5 Hydropathy Plots

Because of the particular structure of the GPCRs, one may reasonably conclude
that it should be possible to detect easily whether a given sequence belongs to
this class by drawing its hydropathy plot according to one of the well-known
hydropathy scales [166]. If this was the case, it would render the HMM ap-
proach much less attractive for detection experiments, at least for this partic-
ular family. To check this point, hydropathy plots of a number of sequences
were constructed, using a 20-amino-acid window. Examples of plots obtained
for three sequences are given in figure 8.3. As can be seen, these plots can
be very noisy and ambiguous. Therefore it seems very unlikely that one could
achieve good detection rates based on hydropathy plots alone. Consensus pat-
terns, hydropathy plots, and HMMs should rather be viewed as complementary
techniques.

One can also compute a hydropathy plot from the HMM probabilities, as
explained in chapter 7. Such a plot, shown in figure 8.4, displays the expected
hydropathy at each position, rather than the hydropathy observed in any indi-
vidual sequence. As a result, the signal is amplified and the seven transmem-
brane regions are clearly identifiable.
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Figure 8.3: Hydropathy Plots for Three GPCRs of Length Less Than 1000, Using a Window of 20
Amino Acids. The vertical axis represents free energy for transferring a hypothetical alpha-helix
of length 20, at the corresponding location, from the membrane interior to water. A peak of 20
kcal/mol or more usually signals the possible presence of a transmembrane alpha-helix.

8.1.6 Bacteriorhodopsin

Bacteriorhodopsin (see [317] for a brief review and [248] for a structural
model) is a seven-transmembrane-domain protein that functions as a light-
driven proton pump in Halobacterium halobium. Although it is functionally
related to rhodopsin, it is not a GPCR. Structural and evolutionary relation-
ships between bacteriorhodopsin and the GPCRs are not entirely clear at the
moment. The raw score given by the HMM to bacteriorhodopsin is 852.27 for
the primary sequence given in [411], and 851.62 for the slightly different se-
quence in [318]. Since the length of bacteriorhodopsin is l = 248, these scores
are in fact close to the regression line constructed on the random sequences
of similar average composition, and slightly below it. The residual of the first
sequence, for instance, is 23.26 and its normalized score is 2.23, according to
(8.3). This confirms that bacteriorhodopsin is not a GPCR and is consistent
with the lack of a significant degree of homology between bacteriorhodopsin
and GPCRs.

In [414] it is suggested that a higher degree of homology can be obtained
by changing the linear order of the helices, and that the sequences may be evo-
lutionarily related via exon shuffling. We thus constructed a new sequence by
moving the seven helices of bacteriorhodopsin into the order (5,6,7,2,3,4,1), as
suggested by these authors. Intracellular and extracellular domains were left
untouched. The raw HMM score of this artificial sequence is 840.98. Although
it is closer to the GPCR scores, the difference does not appear to be particularly
significant. The HMM scores therefore do not seem to provide much support



Protein Applications 197

-5

-4

-3

-2

-1

0

1

2

3

0 50 100 150 200 250 300 350 400

H
yd

ro
pa

th
y

HMM main state

Figure 8.4: Hydropathy Plot for the GPCR HMM.

for the hypothesis presented in [414]. This point, however, requires further
work because of the relatively short length of bacteriorhodopsin and the role
the nonhelical domain may play in the scores.

8.1.7 Classification

By “classification” we mean the organization of a family of sequences into
subclasses. This can be useful, for instance, in phylogenetic reconstruction.
Classification using HMMs can be achieved in at least two different ways: (1)
by training several models in parallel (figure 8.5) and using some form of com-
petitive learning [334], or (2) by looking at how likelihoods and paths cluster
within a single model. The first approach is not suitable here: the total num-
ber of sequences we have, especially for some receptor classes, is too small to
train—for, say, 15 models in parallel. This experiment would require further
algorithmic developments, such as the inclusion of prior information in the
models, as well as new versions of the databases with more sequences.
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S E

Figure 8.5: Classification HMM. Schematic representation of the type of multiple HMM architec-
ture used in [334] for detecting subfamilies within a protein family. Each “box” between the
start and end states corresponds to a single standard HMM.

For the second approach, it is clear from visual inspection of the multiple
alignment that there are clusterings and interesting relationships among the
Viterbi paths corresponding to different receptor subgroups. For instance, all
the thyrotropin receptor precursors (TSHR) have a long initial loop on insert
state 20, the same state that is optimal for (8.1). Interestingly, the same is
true for the lutropin-gonadotropic hormone receptor precursor (LSHR). Here,
we shall not attempt to exploit these relationships systematically to classify
GPCRs from scratch, but rather shall analyze the behavior of the HMM scores
with respect to the preexisting classification into major receptor classes.

For this purpose, we first extract all receptor classes for which we have
at least seven representative sequences in order to avoid major bias effects.
The classes and the number of corresponding sequences are olfactory (11),
adenosine (9), opsin (31), serotonin (18), angiotensin (7), dopamine (12), acetyl-
choline (18), and adrenergic (26), for a total of 132 sequences representing 62%
of the extended database obtained after searching SWISS-PROT. The histogram
of the distances or normalized scores to the random regression line of the se-
quences in the eight classes selected in this way is plotted in figure 8.6. The
normalized scores extend from 20 to 44 and are collected in bins of size 2.

The clustering of all the sequences in a given receptor subclass around a
particular distance is striking. Olfactory receptors are the closest to being ran-
dom. This is perhaps not too surprising, since these receptors must interact
with a very large space of possible odorants. Adrenergic receptors are the most
distant from the random regression line, and hence appear to be the most con-
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Figure 8.6: Histogram of the Distances (Normalized Scores) to the Randomly Generated Se-
quences for Different Classes of GPCRs. Olfactory receptors are closest to being random. Adren-
ergic receptors appear to be the most constrained and the most distant from the line. Different
classes of receptors tend to cluster at different distances. Angiotensin receptors have a particu-
larly narrow distribution of distances.

strained. There are also apparent differences on the standard deviation of each
class. For instance, the angiotensin receptors occupy a narrow band, and only
one angiotensin receptor type is known, whereas the opsin receptors are more
spread out. Most classes seem to have a bell-shaped distribution, but there are
exceptions. The opsins appear to have a bimodal distribution. This could be
the result of the existence of subclasses within the opsins. The second peak
corresponds mostly to rhodopsin (OPSD) sequences and a few red-sensitive
opsins (OPSR). The presence of two peaks does not seem to result from dif-
ferences between vertebrate and invertebrate opsins. With future database
releases, it may be possible to improve the resolution and reduce sampling
effects. But even so, these results suggest a strong relationship between the
score assigned to a sequence by the HMM model and the sequence’s member-
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ship in a given receptor class. On the other hand, it must also be noted that
it would be very difficult to recover the underlying class structure from the
histogram of scores alone, without any a priori knowledge of receptor types.
A detailed classification of the entire GPCR family together with a complete
phylogenetic reconstruction is beyond our scope here.

8.1.8 Fragment Detection from ESTs and cDNA

As a result of EST and cDNA sequencing efforts over the past few years, there
are several databases of DNA sequences corresponding to protein fragments.
It is naturally of interest to be able to recognize and classify such fragments,
and to be able to recover any new useful information. HMMs could be tailored
to such tasks in several ways. One obvious possibility is, for a given protein
family, to train different HMMs to recognize different portions of the protein.
Here we conducted a number of preliminary tests using the GPCR family and
artificially generated fragments. While the typical length of interest to us was
around l = 150, we also investigated what happens at smaller lengths, and
when sequencing noise is taken into account. Sequencing noise was approx-
imated by converting amino acid sequences to DNA and introducing random
independent changes in the DNA with a fixed noise probability p. We concen-
trated on three length levels: l = 150, 100, and 50, and three noise percentage
levels: p = 0, 5, and 10.

We first constructed five data sets, all containing fragments of fixed length
150. In the first set the fragments were extracted at random locations from
the training data set of 142 GPCRs. In the second set, 200 fragments were
extracted randomly from a larger database of GPCRs [325]. In the third set, we
generated 200 random sequences of fixed length 150 with average composi-
tion identical to the GPCRs. In the fourth set, we randomly extracted segments
of length 150 from a database of kinase sequences. Finally, in the fifth set we
did the same but using the SWISS-PROT database.

As with pairwise sequence alignments, HMMs can be used to produce both
local or global alignments. Here we analyze the scores associated with global
alignments to the model, that is with the negative log-likelihoods of the com-
plete Viterbi paths. The histograms of the corresponding scores are plotted
in figure 8.7. These results show in particular that with a raw score threshold
of about 625, such a search can eliminate a lot of the false positives while
producing only a reasonable number of false negatives. The same results are
plotted in figure 8.8, but with a length l = 50 and a noise p = 10%. As can be
seen, the overlap between the distributions is now more significant. This of
course requires a more careful analysis of how performance deteriorates as a
function of fragment length and noise across the entire SWISS-PROT database.
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Figure 8.7: Histogram of Scores of Different Fragment Sequences of Length 150. The first
histogram is constructed from 142 random fragments taken from the training set. All other
histograms are based on 200 fragment sequences taken, in a random fashion, from a larger
database of GPCRs, from randomly generated sequences with similar average composition, from
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Figure 8.9: Summary of Scores on Entire SWISS-PROT Database. Segment lengths are shown
on the horizontal axis, segment scores on the vertical axis. The figure depicts the standard
deviations (striped columns), and the ranges (thin lines) of the scores, for both target (GPCR)
sequences and non-target sequences, for all three segment lengths (50, 100, and 150) and noise
levels (0, 5, and 10).

Summary of Results

The overall results are summarized in figure 8.9. Segment lengths are shown
on the horizontal axis. Segment scores are shown on the vertical axis. The
figure depicts the standard deviations (striped columns) and the ranges (thin
lines) of the scores, for both target (GPCR) sequences and nontarget sequences,
for all three fragment lengths (50, 100, and 150) and noise levels (0, 5, and
10). For each fragment length, the lines represent the ranges for all noise
levels for target (GPCR) and nontarget sequences. To make all possible ranges
for all noise levels visible, the lines representing the score ranges are slightly
displaced with respect to the real fragment length.
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At a given fragment length (e.g., 50), six lines represent, from left to right,
noise level 0 for targets, noise level 0 for nontargets, noise level 5 for targets,
noise level 5 for nontargets, noise level 10 for targets and noise level 10 for
nontargets. Regression lines can be computed for all scores for all target and
all nontarget fragments and each noise level:

• Target sequences

Noise level 0: y = 387.4 + 1.199 l

Noise level 5: y = 384.0 + 1.314 l

Noise level 10: y = 382.3 + 1.401 l

• Non-target sequences

Noise level 0: y = 364.7 + 1.909 l

Noise level 5: y = 364.8 + 1.910 l

Noise level 10: y = 364.8 + 1.911 l

These regression lines are obtained from only three fragment lengths. There-
fore they constitute only an approximation to the scores at all intermediary
lengths. The lines intercept for a fragment length of about 35. This means
that 35 is the approximate length limit for nonzero discrimination based on
scores alone.

As expected, for the target sequences the slopes of the regression lines
substantially increase with noise. Intercepts do not vary much. The slopes
and intercepts for the nontarget sequences are stable; the noise level does not
have a strong influence on nontarget sequences. The approximate regression
line for all nontarget sequences is y ≈ 364.8 + 1.91l. Consistent with the
results in [38], this slope is inferior to the slope of the similar line that can
be derived at greater lengths. The standard deviations of the scores can be
studied similarly, as a function of length and noise level.

ROC results

After scoring the entire database, one can compute, for each length and each
noise level, the number of true and false positives and the number of true
and false negatives, for a given score threshold. These sensitivity/selectivity
results can be summarized by drawing the corresponding ROCs (receiver op-
erating characteristics), as in figure 8.10.

ROC curves are obtained by computing, for threshold values scanned
within a given range, the sensitivity or hit rate (proportion of true positives)
and the selectivity or false alarm rate (proportion of false positives) from the
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Figure 8.10: ROCs for All Scores of All SWISS-PROT Fragments at Lengths 50, 100, and 150 and
Noise Levels 0, 5, and 10. Sequences with ambiguous symbols are filtered out.

number of true/false positives and negatives. Threshold range is a function
of fragment length. For each segment length, the minimum threshold is a
(rounded) value where no non-GPCR fragment is classified as positive across
noise levels; the maximum threshold is a (rounded) value where no known
GPCR (from PROSITE) is classified negative across noise levels. These curves
provide a convenient means for setting thresholds as a function of desirable
goals. As can be seen, there is a nice progressive ordering of the curves as
a function of noise and length. The curves tend to “stick” to the vertical
axes. This clearly shows that very low false alarm rates are obtained even
for high hit rates: there is very good detection of a large number of target
sequences. However, the curves do not “stick” to the horizontal axes. This
shows that to detect the higher percentage of target sequences, the number
of false positives must increase substantially. This is certainly due to the fact
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0 5 10
50 1.16 1.18 1.03

100 1.63 1.49 1.50
150 2.41 2.14 1.96

Table 8.2: Imperfect “Summary” of All Results that Make Possible Estimation of the Performance
of Intermediate Length Fragments and Noise Levels.

that GPCRs comprise both relatively conserved and highly variable regions. It
is virtually impossible to distinguish a short fragment, extracted from a highly
variable region, from the general SWISS-PROT background. Likewise, longer
fragments that include more conserved regions are easier to separate from the
background. For short fragment lengths and high noise levels, these curves
suggest that additional filters should be constructed to improve performance.

Detection analysis with the d′ measure

Given the scores of two populations to be discriminated, and assuming that
these two distributions are Gaussians with the same standard deviation equal
to 1, the d′ measure gives the distance between the centers of the two Gaus-
sians for a certain level of false positives and negatives.

A preliminary detection analysis of the SWISS-PROT scores with a d′ mea-
sure shows that d′ varies widely with the classification threshold. This indi-
cates that the score distribution curves are not Gaussian (as can observed from
the histograms). Because it would be interesting to give a single measure of
performance for each noise level and fragment length, the following method
is used. A linear interpolation measure of false alarm rates is computed for a
hit rate of 0.9 at each noise level and fragment length. The d′ measure is then
computed for the resulting pair (0.9, x), where x is the linearly interpolated
false alarm value. Table 8.2 gives the results for each noise level and fragment
length.

Improving Detection Rates

So far we have examined only the raw scores produced by the HMM, that is, the
negative likelihood of the Viterbi paths. HMMs, however, contain considerable
additional information that could be used in principle to improve database
mining performance. In fact, for each fragment, a number of additional in-
dicators can be built and combined—for instance, in a Bayesian network—to
improve performance. Most notably, the structure of the paths themselves can
be used. As one might expect, there is a clear difference between the paths of
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Figure 8.11: The HMM Used for Signal Peptide Discrimination. The model [406] is designed so
that it implements an explicit modeling of the length distribution in the various regions.The
states in a shaded box are tied to one another.

true and false positives. The path of a false positive is on average more dis-
continuous and contains a larger number of gaps. Several measures of path
discontinuity can be constructed. One can use (1) the number of transitions
out of delete states in a path; (2) the length of the longest contiguous block
of emitting states in a path; or (3) the logarithm of the probability of the path
itself (transitions only/no emissions). In one test, the combination of such
measures with raw scores improves the detection of true positives by 15–20%.
Other directions for improving detection rates are explored in [42].

8.1.9 Signal Peptide and Signal Anchor Prediction by HMMs

In section 6.4.1 the problem of finding signal peptides in the N-terminal part
of prokaryotic and eukaryotic sequences was introduced. The window-based
neural network approach [404] can exploit the correlations among the amino
acids, in particular around the cleavage site, but without extra input units, it
cannot benefit from the pattern in the entire sequence and the different length
distributions that characterize signal peptides.

The length properties of signal peptides are in fact known to differ be-
tween various types of organisms: bacterial signal peptides are longer than
their eukaryotic counterparts, and those of Gram-positive bacteria are longer
than those of Gram-negative bacteria. In addition, there are compositional dif-
ferences that correlate with the position in the signal peptide and also in the
first few residues of the mature protein.
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Figure 8.12: The HMM Designed to Discriminate Between Signal Peptides and Signal Anchors.
The block diagram (top) shows how the combined model [406] is put together from the signal
peptide model and the anchor model. The final states shown in the shaded box are tied to
one another, and model all residues not in a signal peptide or an anchor. The model of signal
anchors (bottom) has only two types of states (grouped by the shaded boxes) apart from the Met
state.

Another important and difficult problem is that some proteins have N-
terminal sequences that initiate translocation in the same way as signal pep-
tides do, but are not cleaved by signal peptidase [541, 406]. The uncleaved
signal peptide is known as a signal anchor, a special type of membrane pro-
tein. Signal anchors typically have hydrophobic regions longer than those of
cleaved signal peptides, and other regions differ also in their compositional
features.

Nielsen and Krogh [406] constructed a hidden Markov model designed both
to discriminate between signal peptides and nonsignal peptides and to locate
the cleavage site. The HMM was designed so that it took known signal peptide
features into account, in particular the different regions described in section
6.4.1. In their scheme a signal peptide model was combined with a model of
signal anchors, in order to obtain a prediction tool that was able to discrimi-
nate between signal peptides and anchors.

The signal peptide model is shown in figure 8.11. It implements an explicit
modeling of the length distribution in the various regions using tied states that
have the same amino acid distribution in the emission and transition proba-
bilities associated with them.

To discriminate among signal peptides, signal anchors, and soluble non-
secretory proteins, the model was augmented by a model of anchors as shown
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in figure 8.12. The whole model was trained using all types of sequences
(known signal peptides and known anchor sequences, as well as cytoplasmic
and nuclear sequences). The most likely path through the combined model
yields a prediction of which of the three classes the protein belongs to.

In terms of predictive performance in relation to discrimination between
signal peptide sequences and nonsignal peptide sequences, the combination
of C-score and S-score neural networks (see section 6.4.1) had a discrimination
level comparable to that of the HMM. For eukaryotes the networks were slightly
better, while for Gram-negative bacteria the HMM was slightly better [406]. For
discrimination between cleaved signal peptides and uncleaved signal anchors,
the HMM had a correlation coefficient of 0.74, corresponding to a sensitivity
of 71% and a specificity of 81%—while the S-score from the neural network
could be used to obtain a performance on this task not exceeding 0.4 for the
correlation coefficient. The HMM is much better at recognizing signal anchor
and therefore at detecting this type of membrane-associated protein.

However, these results should not be taken as a claim that the neural net-
work method is unable to solve the signal anchor problem, since the signal
anchors were not included as training data in the neural network model, as
was the case for the HMM [406].

A similar approach in the form of a structured HMM has been used to model
and predict transmembrane protein toplogy in the TMHMM method [335].
TMHMM can discriminate between soluble and membrane proteins with both
specificity and sensitivity better than 99%, although the accuracy drops when
signal peptides are present. Due to the high degree of accuracy the method
is excellent for scanning entire genomes for detection of integral membrane
proteins [335].

8.2 DNA and RNA Applications

Multiple alignments of nucleotide sequences are harder to make than align-
ments of protein sequences. One reason is that parameters in amino acid
substitution matrices can be estimated by means of evolutionary and biochem-
ical analysis, while it is hard to obtain good measures of general mutation and
deletion costs of individual nucleotides in nucleic acids. The “twilight zone” of
dubious alignment significance is reached faster for sequences from a shorter
alphabet, and fewer evolutionary events are therefore needed to get into the
twilight zone when aligning DNA.

HMMs do not a priori require an explicit definition of the substitution costs.
The HMM approach avoids the computationally hard many-to-many multiple-
sequence alignment problem by recasting it as a many-to-one sequence-to-
HMM alignment problem [155]. The different positions in a model can in prac-
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tice have individual implicit substitution costs associated with them. These
features have contributed to the fact that in several cases HMMs applied to
nucleic acids have led to the discovery of new patterns not previously revealed
by other methods. In protein-related applications, HMMs have more often led
to improvements of earlier methods.

8.2.1 Gene Finding in Prokaryotes and Eukaryotes

Gene finding requires the integration of many different signals: promoter re-
gions, translation start and stop context sequences, reading frame periodici-
ties, polyadenylation signals, and, for eukaryotes, intron splicing signals, com-
positional contrast between exons and introns, potential differences in nucleo-
some positioning signals, and sequence determinants of topological domains.
The last involves the matrix (or scaffold) attachment regions (MARs or SARs),
which are associated with higher-order chromosomal organization. The at-
tachment signals may be involved in promoting transcriptional activity in vivo,
and have recently been reported to be present between genes. For prokaryotes
the DNA sequence also needs to allow strong compaction in a chromatin-like
structure. The length of the extended DNA from a single operon corresponds
to the diameter of the cell. Since all these signals to a large extent comple-
ment each other, in the sense that some may be weak when others are strong,
a probabilistic approach for their integration is the natural way to handle the
complexity of the problem.

In prokaryotes, gene finding is made simpler by the fact that coding regions
are not interrupted by intervening sequences. Still, especially for relatively
short open reading frames, it is nontrivial to distinguish between sequences
that represent true genes and those that do not. In the highly successful gene
finder GeneMark [81, 83, 82], which in its first version was based on frame
dependent nonhomogeneous Markov models, a key feature strongly improving
the performance is a clever detection of the “shadow” of a true coding region
on the non-coding strand (for further detail see chapter 9).

A hidden Markov model has also been developed to find protein-coding
genes in E. coli DNA [336] (work done before the complete E. coli genome be-
came available). This HMM includes states that model the codons and their fre-
quencies in E. coli genes, as well as the patterns found in the intergenic region,
including repetitive extragenic palindromic sequences and the Shine–Dalgarno
motif. To take into account potential sequencing errors and/or frameshifts in
a raw genomic DNA sequence, it allows for the (very unlikely) possibility of
insertions and deletions of individual nucleotides within a codon. The param-
eters of the HMM are estimated using approximately 1 million nucleotides of
annotated DNA, and the model is tested on a disjoint set of contigs containing
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about 325,000 nucleotides. The HMM finds the exact locations of about 80%
of the known E. coli genes, and approximate locations for about 10%. It also
finds several potentially new genes and locates several places where insertion
or deletion errors and/or frameshifts may be present in the contigs.

A number of powerful HMMs and other probabilistic models for gene find-
ing in eukaryotes had been developed (see chapter 9 and [343, 107] and ref-
erences therein). Eukaryotic gene models are typically built by assembling a
number of components, such as submodels for splice sites, exons, and introns
to take advantage of the corresponding weak consensus signals and compo-
sitional differences. The individual submodels must remain relatively small
if the goal is to scan entire genomes in reasonable time. Other key elements
include the use of three exon submodels in parallel in order to take into ac-
count the three possible ways introns may interrupt the reading frame, as well
as features to incorporate exon and intron length distributions, promoters,
poly-adenylation signals, intergenic sequences, and strand asymmetry. It is
often better to train the entire recognition system at once, rather than each
of its components separately. In particular, the standard HMM algorithms can
be modified in order to optimize the global gene parse produced by the sys-
tem rather than the sequence likelihoods [333]. The best gene recognition is
achieved by some of these models [107], with complete exon recognition rates
in the 75 to 80% range (with exact splice sites). Additional work is required to
improve the detection rates further. Such improvements may come from the
incorporation of new, better submodels of promoters or initial and terminal
exons, as well as other physical properties and signals present in the DNA,
such as bendability or nucleosome positioning. Such compactification signals,
which have been completely neglected so far, are likely to play an important
role in the biological gene-finding machinery as well. In the rest of this chap-
ter, we build relatively large models of gene components and describe such
possible signals.

8.2.2 HMMs of Human Splice Sites, Exons, and Introns

Strong research efforts have been directed toward the understanding of the
molecular mechanism responsible for intron splicing ever since it was dis-
covered that eukaryotic genes contain intervening sequences that are removed
from the mRNA molecules before they leave the nucleus to be translated. Since
the necessary and sufficient sequence determinants for proper splicing are still
largely unknown, probabilistic models in the form of HMMs have been used to
characterize the splicing signals found experimentally.

Unlike the case of protein families, it is essential to remark that all exons
and their associated splice site junctions are neither directly nor closely related
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by evolution. However, they still form a “family” in the sense of sharing certain
general characteristics. For example, in a multiple alignment of a set of flanked
exons, the consensus sequences of the splice sites should stand out as highly
conserved regions in the model, exactly like a protein motif in the case of
a protein family. As a result, one should be particularly careful to regard
insertions and deletions in the HMM model as formal string operations rather
than evolutionary events.

To see whether an HMM would pick up easily known features of hu-
man acceptor and donor sites, a model with the standard architecture as
shown in figure 7.2 was trained on 1000 randomly selected flanked donor
and acceptor sites [32, 33, 35]. By close inspection of the parameters
of the HMM trained specifically on the flanked acceptor sites, it was ob-
served that the model learns the acceptor consensus sequence perfectly:
([TC]...[TC][N][CT][A][G][G]). The pyrimidine tract is clearly visible, as
are a number of other known weak signals, such as a branching (lariat) signal
with a high A in the 3’ end of the intron. (See figure 8.13.)

Similarly, the donor sites are clearly visible in a model trained on flanked
donor sites but are harder to learn than the acceptor sites. The consen-
sus sequence of the donor site is learned perfectly: ([CA][A][G][G][T][AG]
[A][G]). The same is true for the G-rich region [164], extending roughly 75
bases downstream from the human donor sites (figure 8.13). The fact that
the acceptor site is easier to learn is most likely explained by the more ex-
tended nature of acceptor site regions as opposed to donor sites. However,
it could also result from the fact that exons in the training sequences are al-
ways flanked by exactly 100 nucleotides upstream. To test this hypothesis, a
similar model using the same sequences, but in reverse order, is trained. Sur-
prisingly, the model still learns the acceptor site much better than the donor
site (which is now downstream from the acceptor site). The random order of
the nucleotides in the polypyrimidine tract region downstream from the ac-
ceptor site presumably contributes to this situation. In contrast, the G-rich
region in the 5’ intron end has some global structure that can be identified by
the HMM.

8.2.3 Discovering Periodic Patterns in Exons and Introns by Means
of New HMM Architectures

In another set of experiments a standard HMM was trained on human exons
flanked by intron sequence. A set of 500 randomly selected flanked internal
exons, with the length of the exons restricted to between 100 and 200 nu-
cleotides, was used (internal human exons have an average length of ≈ 150
nucleotides).
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Figure 8.13: Emission Distribution from Main States of an HMM Model Trained on 1000 Ac-
ceptor (top) and 1000 Donor Sites (bottom). The flanking sequence is kept constant with 100
nucleotides on each side; the model, however, has length 175. For the acceptor sites, the charac-
teristic consensus sequence is easily recognizable ([TC]. . . [TC][N][CT][A][G][G]). Note the high A
probability associated with the branch point downstream from the acceptor site. The character-
istic consensus sequence of the donor site is also easily recognizable ([CA][A][G][G][T][AG][A][G]).
Learning is achieved using the standard architecture (figure 7.2) initialized uniformly, and by
adding a regularizer term to the objective function that favors the backbone transition path.
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Figure 8.14: Emission Distribution from Main States of an HMM Model Trained on 500 Flanked
Internal Exons. The length of the exons was constrained to the interval between 100 and 200
nucleotides, with average of 142, and fixed intron flanking of 100 on each side. The number of
main states in the model was 342. Note the oscillatory pattern in the exon region and outside.

The probability of emitting each of the four nucleotides, across the main
states of the trained model, is plotted in figure 8.14. We see striking periodic
patterns, especially in the exon region, characterized by a minimal period of
10 nucleotides with A and G in phase, and C and T in antiphase. A periodic
pattern in the parameters of the models of the form [AT][CG] (or [AT]G), with a
periodicity of roughly 10 base pairs, can be seen at positions 10, 19, 28, 37,
46, 55, 72, 81, 90, 99, 105, 114, 123, 132 and 141. The emission profile of
the backbone was also compared for two nucleotides jointly. The plots of A+G
and C+T are considerably smoother than those of A+T and C+G on both the
intron side and the exon side. The 10 periodicity is visible both in the smooth
phase/antiphase pattern of A+G and C+T and in the sharp contrast of high
A+T followed by high C+G. There is also a rough three-base pair periodicity,
especially visible in C+G, where every third emission corresponds to a local
minimum. This is consistent with the reading frame features of human genes
[525], which are especially strong on the third codon position (≈30% C and
≈26% G; see figure 6.11).
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Figure 8.15: The Repeated Segment of the Tied Model. Rectangles represent main states and
circles represent delete states. Histograms represent emission distributions from main and
insert states. Thickness of connections is proportional to corresponding transition distribution.
Position 15 is identical to position 5.

In order further to characterize the periodicity, a wide range of different
HMM architectures were trained on nonflanked internal exons, in order to sep-
arate features from the special gradients in the nucleotide composition known
to be present in initial and terminal exons [164]. When training on the bulk of
the internal exons in the length interval between 100 and 200 nucleotides, a
clear and consistent pattern emerged in the emission probabilities, no matter
which architecture was applied. The architectural variation included conven-
tional left–right HMM models, left–right models with identical segments “tied”
together, and loop or “wheel” models with better ability to reveal periodic pat-
terns in the presence of noise. Although the conventional type of left–right
architecture is not the ideal model of an exon, due to the large length varia-
tions, it still identifies the periodic pattern quite well.

To test the periodicity yet further, a “tied” exon model with a hardwired
periodicity of 10 was trained [33]. The tied model consists of 14 identical
segments of length 10 and five additional positions in the beginning and the
end of the model, making a total length of 150. During training the segments
are kept identical by tying the parameters—that is, the parameters are con-
strained to be exactly the same throughout learning, as in the weight-sharing
procedure for neural networks. The model was trained on 800 internal exon
sequences of length between 100 and 200, and it was tested on 262 different
sequences. The parameters of the repeated segment after training are shown
in figure 8.15. Emission probabilities are represented by horizontal bars of
corresponding proportional length. There is a lot of structure in this segment.
The most prominent feature is the regular expression [ˆT][AT]G at positions
12–14. The same pattern was often found at positions with very low entropy in
the standard models described above. In order to test the significance, the tied
model was compared with a standard model of the same length. By comparing
the average negative log-likelihood they both assign to the exon sequences and
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Loop states A C G T

I1 0.1957 0.4808 0.1986 0.1249
M1 0.3207 0.0615 0.0619 0.5559
I2 0.0062 0.0381 0.5079 0.4478
M2 0.1246 0.2982 0.5150 0.0622
I3 0.4412 0.1474 0.2377 0.1737
M3 0.2208 0.6519 0.1159 0.0114
I4 0.2743 0.5893 0.0676 0.0689
M4 0.3709 0.0113 0.0603 0.5575
I5 0.1389 0.2946 0.0378 0.5287
M5 0.0219 0.0121 0.9179 0.0481
I6 0.0153 0.9519 0.0052 0.0277
M6 0.0905 0.1492 0.7017 0.0586
I7 0.1862 0.3703 0.3037 0.1399
M7 0.3992 0.2835 0.3119 0.0055
I8 0.2500 0.4381 0.2968 0.0151
M8 0.4665 0.0043 0.1400 0.3891
I9 0.6892 0.0156 0.2912 0.0040
M9 0.0121 0.2000 0.7759 0.0120
I10 0.2028 0.3701 0.0117 0.4155
M10 0.3503 0.3459 0.2701 0.0787
I11 0.1446 0.6859 0.0861 0.0834

Table 8.3: Emission Distributions for the Main and Insert States of a Loop Model (Figure 8.16)
After Training on 500 Exon Sequences of Length 100–200.

to random sequences of similar composition, it was clear that the tied model
achieves a level of performance comparable with the standard model, but with
significantly fewer free parameters. Therefore a period of around 10 in the
exons seems to be a strong hypothesis.

As the left–right architectures are not the ideal model of exons, it would be
desirable to have a model with a loop structure, possibly such that the segment
can be entered as many times as necessary for any given exon. See [336] for a
loop structure used for E. coli DNA. One example of such a true loop model is
shown schematically in figure 8.16. In the actual exon experiment the loop had
length 10, with two flanks of length 4. This model was trained using gradient
descent and the Dirichlet regularization for the backbone transitions to favor
main states. Additional regularization must be used for the anchor state as a
result of its particular role and connectivity. The Dirichlet vector used for the
anchor state is (0.1689 0.1656 0.1656 0.1689 0.1656 0.1656). The emission
distribution of the main and insert states inside the loop is shown in table 8.3.
Again the results are remarkably consistent with those obtained with the tied
model. The pattern [ˆT][AT]G is clearly visible, starting at main state 3 (M3).

Table 8.4 compares the temporal evolution of the cumulative negative log-
likelihood of the training set in an experiment involving three models: a free
model, a tied model, and a loop model. Although, as can be expected, the free
model achieves the best scores after 12 cycles, this seems to be the result of
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Cycle NLL free model NLL tied model NLL loop model

1 1.013e+05 1.001e+05 9.993e+04
2 1.008e+05 9.902e+04 9.886e+04
3 9.965e+04 9.884e+04 9.873e+04
4 9.886e+04 9.875e+04 9.859e+04
5 9.868e+04 9.869e+04 9.855e+04
6 9.854e+04 9.865e+04 9.849e+04
7 9.842e+04 9.862e+04 9.848e+04
8 9.830e+04 9.861e+04 9.852e+04
9 9.821e+04 9.860e+04 9.845e+04
10 9.810e+04 9.859e+04 9.842e+04
11 9.803e+04 9.859e+04 9.844e+04
12 9.799e+04 9.859e+04 9.843e+04

Table 8.4: Evolution of the NLL Scores over 12 Cycles of Gradient Descent, with η = 0.01, for a
Free Model (Figure 7.2), a Tied Model (Figure 8.15), and a Loop Model (Figure 8.16). All models
are trained on 500 exons of length between 100 and 200 in all reading frames.

some degree of overfitting. The loop model, and to a lesser extent the tied
model, outperform the free model during the first learning cycles. The loop
model performs better than the tied models at all cycles. The free model has a
better score than the loop model only after cycle 7. This is also an indication
that the loop model is a better model for the data.

Finally, a different sort of loop model was trained on both exon and in-
tron sequences. This HMM architecture has the form of a “wheel” with a given
number of main states, without flanking states arranged linearly or any dis-
tinction between main and insert states, and without delete states. Thus there
are no problems associated with potential silent loops. Sequences can enter
the wheel at any point. The point of entry can of course be determined by
dynamic programming. By using wheels with different numbers of states and
comparing the cumulative negative log-likelihood of the training set, the most
likely periodicity can be revealed. If wheels of nine states perform better than
wheels of 10 states, the periodicity can be assumed to be related to the triplet
reading frame rather than to structural aspects of the DNA (see below).

Figure 8.17 displays wheel model architectures (in this case of length 10 nu-
cleotides) where sequences can enter the wheel at any point. The thickness of
the arrows from “outside” represents the probability of starting from the cor-
responding state. After training, the emission parameters in the wheel model
showed a periodic pattern [ˆT][AT]G in a clearly recognizable form in states 8,
9, and 10 of the exon model (top), and in states 7, 8, and 9 in the intron model
(bottom). By training wheels of many different lengths, it was found that mod-
els of length 10 yielded the best fit. Implicitly, this is also confirmed by the
fact that the skip probabilities are not strong in these models. In other words,
if the data were nine-periodic, a wheel model with a loop of length 10 should
be able to fit the data, by heavy use of the possibility of skipping a state in the
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Figure 8.16: A Loop HMM Model Comprising Two Flanks and a Loop Anchored on a Silent State.
The flanks and the loop are similar to the standard architecture.

wheel. State repeating in a nine-state wheel is nonequivalent to state skipping
in a 10-state wheel. These wheel models do not contain independent insert
states (as the linear left–right HMM architectures do). A repeat of the same
state does not give the same freedom in terms of likelihood as if independent
inserts were allowed. Moreover, in analogy to gap penalties in conventional
multiple alignments, the HMM training procedure uses a regularization term
favoring main states over skip states.

All the experiments were repeated using several subsets of exons starting
in the one of the three codon positions in the reading frame, without any sig-
nificant change in the observed patterns of the emission probabilities. For
comparison, figure 8.18 shows the emission probabilities from a nine-state
wheel model trained on the coding part of complete mRNA sequences of con-
catenated exons. This model clearly recognizes the triplet reading frame (com-
pare to figure 6.11). The fact that the pattern is present in intron sequences
provides additional evidence against a reading-frame-associated origin for the
pattern in the exons.

The experiments indicate that the periodicity is strongest in exons, and
possibly also in the immediate flanking intron sequence, but on the average
somewhat weaker in arbitrarily selected deep intron segments. In none of
the experiments using simple linear left–right HMM architectures was a clear
regular oscillation pattern detected in the noncoding sequence. By using the
wheel model to estimate the average negative log-likelihood per nucleotide for
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various types of sequence—different types of exons, introns, and intragenic
regions—it was found that the periodic pattern is strongest in exons. The
period in the alignments (average distance between state 9 nucleotides) is on
the order of 10.1–10.2 nucleotides.

It is well known that “bent DNA” requires a number of small individual
bends that are in phase [488]. Only when bends are phased at ≈ 10.5 bp (cor-
responding to one full turn of the double helix) can stable long-range curva-
ture be obtained. Using the wheel model to perform alignments of introns and
exons, it was found that the sequence periodicity has a potential structural im-
plication because the ≈ 10-periodic bending potential of the aligned sequences
displays the same periodicity. The bendability of the sequences was assessed
using parameters for trinucleotide sequence-dependent bendability deduced
from DNaseI digestion data [96]. DNaseI interacts with the surface of the mi-
nor groove, and bends the DNA molecule away from the enzyme. The exper-
iments [96] therefore quantitatively reveal bendability parameters on a scale
where low values indicate no bending potential and high values correspond
to large bending or bendability toward the major groove, for the 32 double-
stranded triplets: AAA/ATT, AAA/TTT, CCA/TGG, and so on. The profiles of
the bending potentials of exons and introns have been related to nucleosome
positioning [34]. These differences in the strength of the signals in coding and
noncoding regions have possible implications for the recognition of genes by
the transcriptional machinery.

8.2.4 HMMs of Human Promoter Regions

We have also trained a number of HMMs using DNA sequences from human
promoter regions. In one experiment, promoter data were extracted from the
GenBank [62]. Specifically, all human sequences that contained at least 250 nu-
cleotides upstream and downstream from an experimentally determined tran-
scriptional start point were extracted. Sequences containing non-nucleotide
symbols were excluded. The redundancy was carefully reduced using the sec-
ond Hobohm algorithm [259] and a novel method for finding a similarity cut-
off, described in [422]. Briefly, this method is based on performing all pairwise
alignments for a data set, fitting the resulting Smith-Waterman scores to an
extreme value distribution [9, 550], and choosing a value above which there
are more observations than expected from the distribution. A standard linear
architecture with length N = 500 was trained using the remaining 625 se-
quences, all with length 501 (see [421] for details). The training was facilitated
by initializing the main state emissions associated with the TATA-box using
consensus probabilities from promoters with experimentally verified TATA-
boxes.
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Figure 8.17: Wheel HMMs Used for Identifying Periodic Patterns. A. 10-state wheel trained on
500 internal exons of length between 100 and 200 nucleotides. Nonperfect alignment and in-
terference with the reading frame cause features of the pattern to appear in states 2, 3, and 4
as well as 8, 9, and 10. B. 10-state wheel trained on 2000 human introns. 25 nucleotides were
removed at the 5’ and 3’ ends in order to avoid effects of the conserved sequence patterns at
the splice sites.
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Figure 8.18: The Emission Probabilities from a Nine-State Wheel Model Trained on Complete
mRNA Sequences Without the Skip and Loop Arrows. The three-periodic reading frame pattern
is clearly visible, with higher frequencies of A and G, A and T, and C and G on the first, second,
and third codon positions, respectively.

A bendability profile can be computed directly from the trained HMM (see
Appendix D), or from the HMM-derived multiple alignment. A profile derived
from a multiple alignment is shown in figure 8.19. The most striking feature
is a significant increase in bendability in the region immediately downstream
of the transcriptional start point. As promoters most often have been char-
acterized by a number of upstream patterns and compositional tendencies, it
is interesting that the HMM alignment corresponds to structurally similarity
in the downstream region of these otherwise unrelated promoter sequences.
They are not biased towards genes related to a specific function, etc. From a
careful analysis of the sequence periodicities, we conjecture that the increase
in downstream bendability is related to nucleosome positioning and/or facil-
itation of interaction with other factors involved in transcriptional initiation.
We have also computed similar profiles from the HMM backbone probabilities
using different physical scales such as stacking energies [410], nucleosome po-
sitioning [218], and propeller twist [241]. All profiles consistently show a large
signal around the transcriptional start point with differences between the up-
stream and downstream regions. Additional results, including the periodic
patterns, are discussed in [421] (see also [30] for a general treatment on how
to apply additive, structural, or other scales to sequence analysis problems).
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Figure 8.19: The Bendability Profile of Human Promoter Regions. The initiation site is roughly
in the middle. The overall bendability is significantly increased downstream from the initiation
site. This average profile was made from a multiple sequence alignment. A profile computed
from the emission probabilities, instead of the actual triplet frequencies, produced a very similar
pattern for the bendability.

8.3 Advantages and Limitations of HMMs

8.3.1 Advantages of HMMs

The numerous advantages of HMMs in computational molecular biology
should be obvious by now. HMMs come with a solid statistical foundation
and with efficient learning algorithms. They allow a consistent treatment of
insertions and deletion penalties, in the form of locally learnable probabilities.
Learning can take place directly from raw sequence data. Unlike conventional
supervised NNs, HMMs can accommodate inputs of variable length and they
do not require a teacher. They are the most flexible generalization of sequence
profiles. They can be used efficiently in a number of tasks ranging from
multiple alignments, to data mining and classification, to structural analysis
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and pattern discovery. HMMs are also easy to combine into libraries and in
modular and hierarchical ways.

8.3.2 Limitations of HMMs

In spite of their success, HMMs can suffer in particular from two weaknesses.
First, they often have a large number of unstructured parameters. In the case
of protein models, the architecture of figure 7.2 has a total of approximately
49N parameters (40N emission parameters and 9N transition parameters). For
a typical protein family, N is on the order of a few hundred, resulting imme-
diately in models with over 10,000 free parameters. This can be a problem
when only a few sequences are available in a family, not an uncommon situ-
ation in early stages of genome projects. It should be noted, however, that a
typical sequence provides on the order of 2N constraints, and 25 sequences
or so provide a number of examples in the same range as the number of HMM
parameters.

Second, first-order HMMs are limited by their first-order Markov property:
they cannot express dependencies between hidden states. Proteins fold into
complex 3D shapes determining their function. Subtle long-range correlations
in their polypeptide chains may exist that are not accessible to a single HMM.
For instance, assume that whenever X is found at position i, it is generally
followed by Y at position j, and whenever X′ is found at position i, it tends
to be followed by Y′ at j. A single HMM typically has two fixed emission vec-
tors associated with the i and j positions. Therefore, it cannot capture such
correlations. Only a small fraction of distributions over the space of possible
sequences can be represented by a reasonably constrained HMM.1 It must be
noted, however, that HMMs can easily capture long-range correlations that are
expressed in a constant way across a family of sequences, even when such
correlations are the result of 3D interactions. This is the case, for example,
for two linearly distant regions in a protein family that must share the same
hydropathy as a result of 3D closeness. The same hydropathy pattern will be
present in all the members of the family and is likely to be reflected in the
corresponding HMM emission parameters after training.

Chapters 9 to 11 can be viewed as attempts to go beyond HMMs by com-
bining them with NNs to form hybrid models (chapter 9), by modeling the evo-
lutionary process (chapter 10), and by enlarging the set of HMM production
rules (chapter 11).

1Any distribution can be represented by a single exponential-size HMM, with a start state con-
nected to different sequences of deterministic states, one for each possible alphabet sequence,
with a transition probability equal to the probability of the sequence itself.
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Chapter 9

Probabilistic Graphical Models
in Bioinformatics

9.1 The Zoo of Graphical Models in Bioinformatics

High-dimensional probability distributions are one of the fist obstacles one en-
counters when applying the Bayesian framework to typical real-life problems.
This is because the data is high-dimensional, and so are the models we use, of-
ten with many thousand parameters and up. High-dimensionality comes also
with other so called hidden variables. In general, the resulting global distribu-
tion P(D,M,H) is mathematically intractable and this is where the theory of
graphical models comes into play. Using the fact that to a large extent the bulk
of the dependencies in the real world are usually local, the high-dimensional
distribution is approximated by a product of distributions over smaller clus-
ters of variables defined over smaller spaces and which are tractable [348, 292].
In standard Markovian models, for instance, phenomena at time t + 1 may be
linked to the past only through what happens in the present at time t. As a
result, the global probability distribution P(X1, . . . , XN) can be factored as a
product of local probability distributions of the form P(Xt+1|Xt).

To be more specific, let us concentrate on a particular class of graphical
models, namely Bayesian networks [416] (a more formal treatment of graphi-
cal models is given in appendix C). A Bayesian network consists of a directed
acyclic graph with N nodes. To each node i is associated a random variable Xi.
The parameters of the model are the local conditional probabilities, or charac-
teristics, of each random variable given the random variables associated with
the parent nodes P(Xi|Xj : j ∈ N−(i)), where N−(i) denotes all the parents
of vertex i. The“Markovian” independence assumptions of a Bayesian network

225



226 Probabilistic Graphical Models in Bioinformatics

Markov 0

Markov 0

Markov 1

Markov 2

one die

dice

multiple

HMM1

Figure 9.1: Bayesian Network Representation of Markov Models of Increasing Complexity.
Markov models of order 0 correspond to a single die or a collection of independent dice. Markov
models of order 1 correspond to the standard notion of first order Markov chain. In Markov
models of order 2, the present depends on the two previous time steps. All HMMs of order 1
have the same Bayesian network representation given here.

are equivalent to the global factorization property

P(X1, . . . , XN) =
∏
i

P(Xi|Xj : j ∈ N−(i)). (9.1)

In other words, the global probability distribution is the product of all the local
characteristics. In practical applications, the directed nature of the edges of a
Bayesian network is used to represent causality or temporal succession. Thus
it should come as no surprise that Bayesian networks are being intensively
used to model biological sequences, in the same way as they have been used
to model speech or other sequential domains, and to construct expert systems.

In fact, the Bayesian framework allows us to build an increasingly complex
suite of Bayesian network models for biological (and other) sequences. This hi-
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IOHMM

Factorial

HMM

Figure 9.2: Bayesian Network Representation of Factorial HMMs and IOHMMs.

erarchy of models stems from the fact that, at some level, biological sequences
have a sequential primary structure. The simplest probabilistic model for bi-
ological sequences we can think of is the single-die model of chapter 3, with
four (nucleotides for DNA) or 20 (amino acid for proteins) faces, shown in fig-
ure 3.1. Such a model is represented by a Bayesian network with a single node
or better with multiple identical disconnected nodes, one for each position in a
sequence or in a family of sequences. The die model is trivial and remote from
actual biological sequences but it serves as a first step and is often used as a
background model against which to compare more sophisticated approaches.

At the next level, we can imagine a sequence of distinct dice, one for each
position. This is essentially the model used when making profiles, abstracted
for instance from pre-existing multiple alignments. If we connect the nodes
of this model in a left-right chain, we get a standard first-order Markov model.
Second- and higher-order Markov models, where the present may depend on
several steps in the immediate past, are also possible. Their Bayesian network
representation is obvious as well as their main weakness: a combinatorial ex-
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Figure 9.3: Bayesian Networks with Backward Markov Chains. All the backward chains in this
figure can be replaced by forward chains via a simple change of variables.

plosion of the parameter space as the degree of the chain increases. For a
small alphabet size such as DNA, however, Markov models of order up to six
are possible and are commonly used in the literature, for instance in gene
finding algorithms (see figure 9.1).

Simple left-right Markov models, however, do not directly capture inser-
tions and deletions. We have seen that such events can be taken into account
by using hidden Markov models (HMMs). HMMs can easily be represented as
Bayesian networks. As such, their representation is similar to that of other
models, such as Kalman filters. The Bayesian network representation of HMMs
clarifies their probabilistic structures and the corresponding evidence prop-
agation and learning algorithms, such as the well-known forward-backward
algorithms and several other EM/gradient-descent variants [493].

More complex Markovian models have been used in artificial intelligence,
for instance, factorial HMMs where the output depends on two or more for-
ward Markov chains. In the speech domain, for instance, one chain can repre-
sent audio information and the other video information about lip configuration
[203, 205]. Another set of models described in [40, 58] and discussed in a later
section are the IOHMMs (input-output HMMs) (see figure 9.2). These models
can be used to translate a given input sequence into an output sequence over
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BIOHMM

Figure 9.4: Bayesian Network Representation of a BIOHMM. Note the presence of numerous
undirected cycles.

a possibly different alphabet.

One important observation about biological sequences is that in reality
they have a spatial rather than temporal structure. In particular, informa-
tion from the “future” could be used to interpret the present without breaking
any causality constraint. As a minimum, this suggests introducing backward
Markovian chains in the previous models. Yet one must be careful, for it is easy
to show that a simple backward Markov chain is entirely equivalent to a for-
ward chain by a change of variables. The parameters of the two corresponding
Bayesian network models are related by Bayes’s rule. Likewise, if we reverse
the direction of one of the chains of a factorial HMM, we obtain another facto-
rial HMM that is entirely identical to the first one, and hence there is little to
be gained (see figure 9.3). If we introduce a backward chain in an IOHMM, how-
ever, we obtain a new class of models we call BIOHMM (bi-directional IOHMM)
[36] (see figure 9.4).

In the last section of this chapter, we will look at the applications of
BIOHMMs and related models to the prediction of protein secondary struc-
ture. But first, we turn to other applications of probabilistic graphical models
to sequence analysis problems, and in particular to DNA symmetries, gene
finding, and gene parsing, and to general techniques for combining artificial
NNs with graphical models.
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9.2 Markov Models and DNA Symmetries

In a piece of double-helical DNA, the number of As is equal to the number of
Ts, and the number of Cs is equal to the number of Gs. What appears today
as a trivial property in fact was essential in guiding Watson and Crick towards
the discovery of the double-helix model in the early 1950s. This property is
also known as Chargaff’s first parity rule [119]. Chargaff’s second parity rule,
however, is less known and states that the same thing is approximately true
for a piece of single-stranded DNA of reasonable size. This rule, first stated
in the 1960s [303, 120], has received some recognition in the recent years
[430, 185, 231].

The validity of Chargaff’s second parity rule can be studied across different
organisms, across different kinds of DNA such as coding versus non-coding,
and across different length scales. For simplicity, here we look only at genomic
DNA in yeast. If we measure the DNA composition of the W and C strands of
each chromosome of yeast we find that this composition is remarkably stable
and follows Chargaff’s second parity rule with approximately 30% for A and T,
and 20% for C and G (table 9.1). Notably, the same symmetry is observed in
yeast mitochondrial DNA but with a different composition. Likewise, single-
stranded genomic DNA in other organisms has a different but still symmetric
average composition.

To study the symmetries of double-stranded DNA we count how often each
nucleotide occurs on each strand over a given length. These frequencies corre-
spond to a probabilistic Markov model of order 1. It is then natural also to look
at Markov models of higher orders (order N) by looking at the statistics of the
corresponding N-mers. In particular, we can ask whether Chargaff’s second
parity rule holds for orders beyond the first, for instance for dinucleotides,
equivalent to second-order Markov models.

A DNA Markov model of order N has 4N parameters associated with the
transition probabilities P(XN|X1, . . . , XN−1), also denoted P(X1, . . . , XN−1 →
XN), for all possible X1, . . . , XN in the alphabet together with a starting distri-
bution of the form π(X1, . . . , XN−1). Because the number of parameters grows
exponentially, only models up to a certain order can be determined from a
finite data set. A DNA Markov model of order 5, for instance, has 1,024 pa-
rameters and a DNA Markov model of order 10 has slightly over one million
parameters. Conversely, the higher the order, the larger the data set needed
to properly fit the model.

Because of the complementarity between the strands, a Markov model of
order N of one strand immediately defines a Markov model of order N on the
reverse complement. We say that a Markov model of order N is symmetric
if it is identical to the Markov model of order N of the reverse complement.
Thus a Markov model is symmetric if and only if P(X1 . . . XN) = P(XN . . . X1).
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A C G T Total bp
Chr. 1 69,830 44,641 45,763 69,969 230,203

30.33% 19.39% 19.88% 30.39%
Chr. 2 249,640 157,415 154,385 251,700 813,140

30.70% 19.36% 18.99% 30.95%
Chr. 3 98,210 62,129 59,441 95,559 315,339

31.14% 19.70% 18.85% 30.30%
Chr. 4 476,752 289,343 291,354 474,480 1,531,929

31.12% 18.89% 19.02% 30.97%
Chr. 5 176,531 109,828 112,314 178,197 576,870

30.60% 19.04% 19.47% 30.89%
Chr. 6 82,928 52,201 52,435 82,584 270,148

30.70% 19.32% 19.41% 30.57%
Chr. 7 338,319 207,764 207,450 337,403 1,090,936

31.01% 19.04% 19.02% 30.93%
Chr. 8 174,022 109,094 107,486 172,036 562,638

30.93% 19.39% 19.10% 30.58%
Chr. 9 134,340 85,461 85,661 134,423 439,885

30.54% 19.43% 19.47% 30.56%
Chr. 10 231,097 142,211 143,803 228,329 745440

31.00% 19.08% 19.29% 30.63%
Chr. 11 206,055 127,713 126,005 206,672 666,445

30.92% 19.16% 18.91% 31.01%
Chr. 12 330,586 207,777 207,064 332,745 1,078,172

30.66% 19.27% 19.21% 30.86%
Chr. 13 286,296 176,735 176,433 284,966 924,430

30.97% 19.12% 19.09% 30.83%
Chr. 14 241,561 151,651 151,388 239,728 784,328

30.80% 19.34% 19.30% 30.56%
Chr. 15 339,396 209,022 207,416 335,449 1,091,283

31.10% 19.15% 19.01% 30.74%
Chr. 16 293,947 180,364 180,507 293,243 948,061

31.01% 19.02% 19.04% 30.93%
Chr. mt 36,169 6,863 7,813 34,934 85,779

42.17% 8.00% 9.11% 40.73%
16 nuclear Chr. 3,729,510 2,313,349 2,308,905 3,717,483 12,069,247

30.90% 19.17% 19.13% 30.80%
All Chr. 3,765,679 2,320,212 2,316,718 3,752,417 12,155,026

30.98% 19.09% 19.06% 30.87%

Table 9.1: First-order Distribution of Yeast Genomic and Mitochondrial DNA per Chromosome.
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A → A 0.3643 AA 0.1154
A → T 0.2806 AT 0.0889
A → G 0.1858 AG 0.0589
A → C 0.1684 AC 0.0533
T → A 0.2602 TA 0.0814
T → T 0.3662 TT 0.1146
T → G 0.1858 TG 0.0581
T → C 0.1882 TC 0.0589
G → A 0.3166 GA 0.0581
G → T 0.2784 GT 0.0511
G → G 0.1945 GG 0.0357
G → C 0.2106 GC 0.0387
C → A 0.3304 CA 0.0619
C → T 0.3116 CT 0.0583
C → G 0.1639 CG 0.0307
C → C 0.1941 CC 0.0364

Table 9.2: Second-order Transition Parameters and Dinucleotide Distribution of Yeast 500 bp
Upstream Regions.

If we look at genomic DNA in yeast, for instance, we find a very high degree
of symmetry in all the higher-order Markov models with orders up to at least
9, even within various subregions of DNA (table 9.2). Some have suggested
that this symmetry could easily be explained from the first-order symmetry.
Indeed, if P(A) = P(T ) and if P(AA) = P(A)P(A) then automatically P(AA) =
P(TT). The question then is precisely whether the higher order Markov models
are factorial, i.e., entirely determined by the products resulting from the lower-
order models.

More formally, a Markov model of order N induces a distribution over
lower-order M-mers called the restriction or projection of the orginal distri-
bution. This projection is easily obtained for instance by generating a long
string with the Markov model of order N and measuring the statistics of the
M-mers. In particular, a Markov model of order N induces a first-order equi-
librium distribution that must satisfy the balance equation

P(X2, . . . , XN) =
∑
Y
P(XN|Y ,X2 . . . , XN−1)

P(Y ,X2, . . . , XN−1) (9.2)

If a Markov model of order N is symmetric, its restrictions or projections
to lower orders are also symmetric. The converse, however is not true. In gen-
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2 3 4 5 6 7 8 9
0 1.0 .99 .99 .99 .99 .99 .97 .95
1 .98 .97 .97 .97 .95 .90 .77 .55
2 .94 .95 .94 .91 .83 .66 .45
3 .97 .94 .89 .77 .57 .36
4 .82 .73 .58 .39 .24
5 .60 .46 .29 .18
6 .34 .21 .14
7 .12 .10
8 .09

Table 9.3: Counts and Symmetry Effects. Row 0 represents the correlation for the counts C
of N-mers (N = 2, . . . ,9) between the direct upstream strand and its reverse complement. In
rows M = 1 to 9, similar correlations are computed but using the ratio C/E(C), where E(C) is
the expected number of counts produced by a Markov model of order M fitted to the upstream
regions. Horizontal = N-mers, vertical = model order.

eral, a symmetric Markov model of order N can have multiple not necessarily
symmetric extensions to a Markov model of order M, M > N. Thus the fact
that the first-order distribution of yeast, for instance, is symmetric does not
necessarily imply that the second order distribution is also symmetric. But
this is precisely the case. A given Markov model of order N, however, has a
unique factorial extension to Markov models of order M > N. For instance, a
first-order Markov model defined by the parameters pX (pA,pC,pG,pT ) has a
second-order factorial extension with parameters pXY = pXpY .

For a given Markov model of order N, we can factor out the symmetry ef-
fects due to any Markov model of lower order M. For each N-mer and its
reverse complement we can get the ratio (or the difference) between the num-
ber of expected counts according to the model of order N and to the model of
order M used factorially. The residual symmetry can be measured by looking
at the correlation of the ratios between N-mers and their respective reverse
complements. If we use this approach in yeast, we find a considerable amount
of residual symmetry in the higher-order models that cannot be entirely ex-
plained, for instance, by the symmetry of the first-order composition (table
9.3).

Thus higher-order Markov models allow us to study Chargaff’s second par-
ity rule in great detail. Chargaff’s second parity rule is of course not true lo-
cally, and it is also violated in some viral genomes. There are also well-known
compositional biases around the origin of replication in prokaryotic genomes.
But by and large it is remarkably valid and probably results from a complex
mixture of influences operating at different scales. It is clear that because of
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DNA W ORFs C ORFs Total
Chr. 1 56 51 107
Chr. 2 200 226 426
Chr. 3 75 99 174
Chr. 4 400 419 819
Chr. 5 146 141 287
Chr. 6 67 67 134
Chr. 7 298 273 571
Chr. 8 153 131 284
Chr. 9 106 118 224
Chr. 10 201 186 387
Chr. 11 175 161 336
Chr. 12 261 286 547
Chr. 13 246 244 490
Chr. 14 219 201 420
Chr. 15 295 278 573
Chr. 16 256 244 500
Total 3154 3125 6279

Table 9.4: Number of ORFs of Length Greater than 100 per Strand and per Chromosome in
Yeast, Excluding tRNA and rRNA Genes. The total excludes the mitochondrial chromosome.

Chargaff’s first parity rule, any force operating on DNA that does not distin-
guish between the two strands will contribute to Chargaff’s second parity rule.
Mutations induced for instance by radiation are likely to fall in this class. Like-
wise, the replication machinery of the cell must be optimized for producing
the same number of complementary base pairs, and this also should favor the
first-order version of Chargaff’s second parity rule. Other effects under study
may be more long-ranged, such as the approximately symmetric distribution
of genes on each strand (table 9.4). This distribution could also be modeled
using probabilistic Markov models.

9.3 Markov Models and Gene Finders

One the most important applications of Markov and graphical models to se-
quence analysis has been the construction of various gene finders and gene
parsers such as GeneMark and GeneMark.hmm [81, 82, 367], GLIMMER [461],
GRAIL [529], GenScan [107] and now GenomeScan, and Genie [441]. Our goal
here is not to give an exhaustive list of all gene finders, nor to describe each
one of them in detail, nor to compare their respective merits and drawbacks,
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Figure 9.5: Graphical Representation of GeneMark for Prokaryotic Genomes. For prokaryotic
genomes, typical high-level modules include modules for coding region and non-coding regions.

but to provide a synthetic overview showing how they can be constructed and
understood in terms of probabilistic graphical models.

Integrated gene finders and gene parsers typically have a modular archi-
tecture and often share the same basic strategies. They comprise two basic
kinds of elementary modules aimed at detecting boundary elements or vari-
able length regions. Examples of boundary modules associated with local-
ized signals include splice sites, start and stop codons, various transcription
factor and other protein binding sites (such as the TATA-box), transcription
start points, branch points, terminators of transcription, polyadenylation sites,
ribosomal binding sites, topoisomerase I cleavage sites, and topoisomerase
II binding sites. Region modules instead are usually associated with exons,
introns, and intergenic regions. Exon models in turn are often subdivided
into initial, internal, and terminal exons due to the well-known statistical dif-
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Figure 9.6: Graphical Representation of GeneMark.hmm for Prokaryotic Genomes.

ferences among these elements. Ultimately, computational models of entire
genomes must include also other regions, including various kinds of repetitive
regions, such as Alu sequences.

High-level graphical representations of several genefinders are displayed
in figures 9.5, 9.6, 9.7, and 9.8. reprinted here with permission from the au-
thors. The high-level representations and the underlying graphical models
are of course significantly more complex for eukaryotic gene finders than for
prokaryotic ones, due for instance to the presence of exons and introns. It is
important to observe that the graphs in these figures do not directly represent
Bayesian networks but rather transition state diagrams, in the same way the
standard HMM architectures of chapter 7 do not correspond to the Bayesian
network representation of HMMs that we saw in the first section of this chap-
ter. In fact, most genefinders can be viewed as HMMs, or variations of HMMs,
at least at some level.

The high-level nodes in these graphs represent boundary or region mod-
ules. There are some differences between the gene finders in the choice of
modules and in how the modules are implemented and trained. In the case of
boundary modules, early implementations used simple consensus sequences.
These have evolved into profiles or weight matrix schemes, which are spe-
cial cases of first-order Markov models in which scores are interpreted as log-
likelihoods or log ratios, and Markov models. Because the DNA alphabet has
only four letters, higher-order Markov models can be used when sufficient
training data is available. Neural networks, which algebraically can be viewed
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Figure 9.7: Graphical Representation of High-level States of GeneMark.hmm for Eukaryotic
Genomes. The model include states corresponding to initial and terminal exons, internal exons,
introns, in all reading frames and for the direct and reverse strand.
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Figure 9.8: Graphical Representation of Hidden States in GenScan. Similar to figure 9.7. Notice
the additional states, for instance, for poly-A signals.
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as generalization of weight matrices, are also used in some boundary modules.
Variable length regions are usually modeled with Markov models of order

up to 6. In particular, coding regions have well known 3- and 6-periodicities
that can easily be incorporated into Markov models of order 3 or 6. Exon mod-
els must take into account reading frames and knowledge of reading frame
must somehow propagate through the intervening sequence to the next exon.
The state connectivity can be used to model the different reading frames but
also the length distribution of each component, i.e. how long the system ought
to remain in each state. Such durations can also be modeled or adjusted using
empirical distributions extracted from the available data, or by fitting theoret-
ical distributions to the training data (see also [154]). Because genes can occur
on either strand in the 5’ to 3’ orientation, gene finders must be able to model
both situations in mirror fashion. A gene casts a “shadow” on the opposite
strand and therefore a single strand can be scanned to find genes located on
either strand.

The resulting models can be used to “scan” and parse large genomic re-
gions using dynamic programming and Viterbi paths (maximum likelihood,
maximum a posteriori, or even conditional maximum likelihood as in [339]),
which, depending on the size of the regions, can be computationally demand-
ing. The “hits” can be further filtered and improved by leveraging the infor-
mation about coding regions contained in large ESTs and protein databases,
including databases of HMM models such as Pfam, using alignments. The pa-
rameters of the various boundary or region models can be fitted to different
organisms, or even different genomic regions with different compositional bi-
ases or different gene classes, resulting in different specialized gene finders
and gene parsers.

Although the performance of gene finders is not easy to measure and com-
pare, overall it has significantly improved over the past few years. These pro-
grams now play an important role in genome annotation projects. Several
significant challenges remain, however, such as creating better models of reg-
ulatory regions and of alternative splicing.

9.4 Hybrid Models and Neural Network Parameterization of
Graphical Models

9.4.1 The General Framework

In order to overcome the limitations of HMMs, we shall look here at the pos-
sibility of combining HMMs and NNs to form hybrid models that contain the
expressive power of artificial NNs with the sequential time series aspect of
HMMs. In this section we largely follow the derivation in [40]. There are a
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number of ways in which HMMs and NNs can be combined. Hybrid archi-
tectures have been used in both speech and cursive handwriting recognition
[84, 126]. In many of these applications, NNs are used as front-end proces-
sors to extract features, such as strokes, characters, and phonemes. HMMs
are then used in higher processing stages for word and language modeling1.
The HMM and NN components are often trained separately, although there are
some exceptions [57]. In a different type of hybrid architecture, described in
[126], the NN component is used to classify the pattern of likelihoods pro-
duced by several HMMs. Here, in contrast, we will cover hybrid architectures
[40] where the HMM and NN components are inseparable. In these architec-
tures, the NN component is used to reparameterize and modulate the HMM
component. Both components are trained using unified algorithms in which
the HMM dynamic programming and the NN backpropagation blend together.
But before we proceed with the architectural details, it is useful to view the
hybrid approach from the general probabilistic standpoint of chapter 2 and of
graphical models.

The General Hybrid Framework

From Chapter 2, we know that the fundamental objects we are interested in
are probabilistic models M(θ) of our data, parameterized here by θ. Problems
arise, however, whenever there is a mismatch between the complexity of the
model and the data. Overly complex models result in overfitting, overly simple
models in underfitting.

The general hybrid modeling approach attempts to address both problems.
When the model is too complex, it is reparameterized as a function of a simpler
parameter vector w, so that θ = f(w). This is the single-model case. When
the data are too complex, the only solution, short of resorting to a different
model class, is to model the data with several M(θ)s, with θ varying discretely
or continuously as M(θ) covers different regions of data space. Thus the pa-
rameters must be modulated as a function of the input, or context, in the
form θ = f(I). This is the multiple-model case. In the general case, both may
be desirable, so that θ = f(w, I). This approach is hybrid in the sense that
the function f can belong to a different model class. Since neural networks
have well-known universal approximation properties (see chapter 5), a natural
approach is to compute f with an NN, but other representations are possible.
This approach is hierarchical because model reparameterizations can easily be
nested at several levels. Here, for simplicity, we confine ourselves to a single
level of reparameterization.

1In molecular biology applications, NNs could conceivably be used to interpret the analog
output of various sequencing machines, although this is not our focus here.
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Input: HMM states

Output emission distributions
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Figure 9.9: From HMM to hybrid HMM/NN. A: Schematic representation of simple HMM/NN
hybrid architecture used in [41]. Each HMM state has its own NN. Here, the NNs are extremely
simple, with no hidden layer and an output layer of softmax units computing the state emission
or transition parameters. For simplicity only output emissions are represented. B: Schematic
representation of an HMM/NN architecture where the NNs associated with different states (or
different groups of states) are connected via one or several hidden layers.

9.5 The Single-Model Case

Basic Idea

In a general HMM, an emission or transition vector θ is a function of the state
i only: θ = f(i). The first basic idea is to have a NN on top of the HMM for the
computation of the HMM parameters, that is, for the computation of the func-
tion f . NNs are universal approximators, and therefore can represent any f .
More important perhaps, NN representations of the parameters make possible
the flexible introduction of many possible constraints. For simplicity, we dis-
cuss emission parameters only in a protein context, but the approach extends
immediately to transition parameters as well, and to all other alphabets.

In the reparameterization of (7.33), we can consider that each of the HMM
emission parameters is calculated by a small NN, with one input set to 1 (bias),
no hidden layers, and 20 softmax output units (figure 9.9A). The connections
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between the input and the outputs are the wiX parameters. This can be gen-
eralized immediately by having arbitrarily complex NNs for the computation
of the HMM parameters. The NNs associated with different states can also
be linked with one or several common hidden layers, the overall architecture
being dictated by the problem at hand (figure 9.9B). In the case of a discrete
alphabet, however, such as for proteins, the emission of each state is a multi-
nomial distribution, and therefore the output of the corresponding network
should consist of |A| normalized exponential units.

Example

As a simple example, consider the hybrid HMM/NN architecture of figure 9.10,
consisting of the following

1. Input layer: one unit for each state i. At each time, all units are set to 0,
except one that is set to 1. If unit i is set to 1, the network computes eiX,
the emission distribution of state i.

2. Hidden layer: |H| hidden units indexed by h, each with transfer function
fh (logistic by default) and bias bh (|H| < |A|).

3. Output layer: |A| softmax units or normalized exponentials, indexed by
X, with bias bX.

4. Connections: α = (αhi connects input position i to hidden unit h). β =
(βXh connects hidden unit h to output unit X). No confusion with the
HMM forward or backward variable should be possible.

For input i, the activity in the hth unit in the hidden layer is given by

fh(αhi + bh). (9.3)

The corresponding activity in the output layer is

eiX = e−[
∑
h βXhfh(αhi+bh)+bX]∑

Y e−[
∑
h βYhfh(αhi+bh)+bY ] . (9.4)

Remarks

For hybrid HMM/NN architectures, a number of points are worth noting:

• The HMM states can be partitioned into groups, with different networks
for different groups. In protein applications one can use different NNs for
insert states and for main states, or for different groups of states along
the protein sequence corresponding to different regions (hydrophobic,
hydrophilic, alpha-helical, etc.).
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S E

X

Figure 9.10: Simple Hybrid Architecture. Schematic representation of HMM states. Each state is
fully interconnected to the common hidden layer. Each unit in the hidden layer is fully intercon-
nected to each normalized exponential output unit. Each output unit calculates the emission
probability eiX.

• HMM parameter reduction can easily be achieved using small hidden lay-
ers with |H| hidden units and |H| small compared with N or |A|. In figure
9.10, with |H| hidden units and considering only main states, the num-
ber of parameters is |H|(N + |A|) in the HMM/NN architecture, versus
N|A| in the corresponding simple HMM. For protein models, this yields
roughly |H|N parameters for the HMM/NN architecture, versus 20N for
the simple HMM. |H| = |A| is roughly equivalent to (7.33).

• The number of parameters can be adaptively adjusted to variable training
set sizes by changing the number of hidden units. This is useful in envi-
ronments with large variations in database sizes, as in current molecular
biology applications.

• The entire bag of NN techniques—such as radial basis functions, multiple
hidden layers, sparse connectivity, weight sharing, Gaussian priors, and
hyperparameters—can be brought to bear on these architectures. Sev-
eral initializations and structures can be implemented in a flexible way.
By allocating different numbers of hidden units to different subsets of
emissions or transitions, it is easy to favor certain classes of paths in
the models when necessary. In the HMM of figure 7.2 one must in gen-
eral introduce a bias favoring main states over insert states prior to any
learning. It is easy also to link different regions of a protein that may
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have similar properties by weight sharing and other types of long-range
correlations. By setting the output bias to the proper values, the model
can be initialized to the average composition of the training sequences
or any other useful distribution.

• Classical prior information in the form of substitution matrices is eas-
ily incorporated. Substitution matrices ([8]; see also chapters 1 and 10)
can be computed from databases, and essentially produce a background
probability matrix P = (pXY ), where pXY is the probability that X will be
changed into Y over a certain evolutionary time. P can be implemented
as a linear transformation in the emission NN.

• Although HMMs with continuous emission distributions are outside the
scope of this book, they can also be incorporated in the HMM/NN frame-
work. The output emission distributions can be represented in the form
of samples, moments, and/or mixture coefficients. In the classical mix-
ture of Gaussians case, means, covariances, and mixture coefficients can
be computed by the NN. Likewise, additional HMM parameters, such as
exponential parameters to model the duration of stay in any given state,
can be calculated by an NN.

Representation in Simple HMM/NN Architectures

Consider the particular HMM/NN described above (figure 9.10), where a subset
of the HMM states is fully connected to |H| hidden units, and the hidden units
are fully connected to |A| softmax output units. The hidden unit bias is not
really necessary in the sense that for any HMM state i, any vector of biases
bh, and any vector of connections αhi, there is a new vector of connections
α′hi that produces the same vector of hidden unit activations with 0 bias. This
is not true in the general case—for example, as soon as there are multiple
hidden layers, or if the input units are not fully interconnected to the hidden
layer. We have retained the biases for the sake of generality, and also because
even if they do not enlarge the space of possible representations, they may
still facilitate the learning procedure. Similar remarks hold more generally
for the transfer functions. With an input layer fully connected to a single
hidden layer, the same hidden layer activation can be achieved with different
activation functions by modifying the weights.

A natural question to ask is “What is the representation used in the hid-
den layer, and what is the space of emission distributions achievable in this
fashion?” Each HMM state in the network can be represented by a point in the
[−1,1]|H| hypercube. The coordinates of a point are the activities of the |H|
hidden units. By changing its connections to the hidden units, an HMM state



The Single-Model Case 245

can occupy any position in the hypercube. Thus, the space of emission distri-
butions that can be achieved is entirely determined by the connections from
the hidden layer to the output layer. If these connections are held fixed, then
each HMM state can select a corresponding optimal position in the hypercube
where its emission distribution, generated by the NN weights, is as close as
possible to the truly optimal distribution—for instance, in cross-entropy dis-
tance. During on-line learning, all parameters are learned at the same time, so
this may introduce additional effects.

Further to understand the space of achievable distributions, consider the
transformation from hidden to output units. For notational convenience, we
introduce one additional hidden unit numbered 0, always set to 1, to express
the output biases in the form bX = βX0. If, in this extended hidden layer, we
turn single hidden units to 1, one at a time, we obtain |H|+1 different emission
distributions in the output layer Ph = (phX ) (0 ≤ h ≤ |H|), with

phX =
e−βXh∑
Y∈A e−βYh

. (9.5)

Consider now a general pattern of activity in the hidden layer of the form
(1, µ1, . . . , µ|H|). By using (9.4) and (9.5), the emission distribution in the output
layer is then

eiX = e−
∑
h=0 |H|βXhµh∑

Y∈A e−
∑
h=0 |H|βYhµh =

∏
h∈H[phX ]µh[

∑
Y∈A e−βYh]µh∑

Y∈A
∏
h∈H[phY ]µh[

∑
Z∈A e−βZh]µh

. (9.6)

After simplification, this yields

eiX =
∏
h∈H[phX ]µh∑

Y∈A
∏
h∈H[phY ]µh

. (9.7)

Therefore, all the emission distributions achievable by the NN have the form
of (9.7), and can be viewed as “combinations” of |H|+1 fundamental distribu-
tions Ph associated with each single hidden unit. In general, this combination
is different from a convex linear combination of the Phs. It consists of three
operations: (1) raising each component of Ph to the power µh, the activity of
the hth hidden unit; (2) multiplying all the corresponding vectors component-
wise; (3) normalizing. In this form, the hybrid HMM/NN approach is different
from a mixture of Dirichlet distributions approach.

Learning

HMM/NN architectures can be optimized according to ML or MAP estimation.
Unlike HMMs, for hybrid HMM/NN architectures the M step of the EM algorithm
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cannot, in general, be carried out analytically. However, one can still use some
form of gradient descent using the chain rule, by computing the derivatives
of the likelihood function with respect to the HMM parameters, and then the
derivatives of the HMM parameters with respect to the NN parameters. The
derivatives of the prior term, when present, can easily be incorporated. It is
also possible to use a Viterbi learning approach by using only the most likely
paths. The derivation of the learning equations is left as an exercise and can
also be found in [40]. In the resulting learning equations the HMM dynamic
programming and the NN backpropagation components are intimately fused.
These algorithms can also be seen as GEM (generalized EM) algorithms [147].

9.5.1 The Multiple-Model Case

The hybrid HMM/NN architectures described above address the first limita-
tion of HMMs: the control of model structure and complexity. No matter how
complex the NN component, however, the final model so far remains a single
HMM. Therefore the second limitation of HMMs, long-range dependencies, re-
mains. This obstacle cannot be overcome simply by resorting to higher-order
HMMs. Most often these are computationally intractable. A possible approach
is to try to build Markov models with variable memory length by introducing
a new state for each relevant context. This requires a systematic method for
determining relevant contexts of variable lengths directly from the data. Fur-
thermore, one must hope the number of relevant contexts remains small. An
interesting approach along these lines can be found in [448], where English is
modeled as a Markov process with variable memory length of up to ten letters
or so.

To address the second limitation without resorting to a different model
class, one must consider more general HMM/NN hybrid architectures, where
the underlying statistical model is a set of HMMs. To see this, consider again
the X−Y/X′−Y′ problem mentioned at the end of chapter 8. Capturing such de-
pendencies requires variable emission vectors at the corresponding locations,
together with a linking mechanism. In this simple case, four different emission
vectors are needed: ei, ej, e′i and e′j . Each one of these vectors must assign a
high probability to the letters X,Y,X′, and Y′, respectively. More important,
there must be some kind of memory, that is, a mechanism to link the distribu-
tions at i and j, so that ei and ej are used for sequence O and e′i and e′j are
used for sequence O′. The combination of ei and e′j (or e′i and ej) should be
rare or not allowed, unless required by the data. Thus ei and ej must belong
to a first HMM and e′i and e′j to a second HMM, with the possibility of switch-
ing from one HMM to the other as a function of input sequence. Alternatively,
there must be a single HMM but with variable emission distributions, again
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modulated by some input.
In both cases, then, we consider that the emission distribution of a given

state depends not only on the state itself but also on an additional stream of
information I . That is now θ = f(i, I). Again, in a multiple-HMM/NN hybrid
architecture this more complex function f can be computed by an NN. De-
pending on the problem, the input I can assume different forms, and may be
called a “context” or “latent” variable. When feasible, I may even be equal to
the currently observed sequence O. Other inputs are possible, however, over
different alphabets. An obvious candidate in protein modeling tasks would be
the secondary structure of the protein (alpha-helices, beta-sheets and coils). In
general, I could also be any other array of numbers representing latent vari-
ables for the HMM modulation [374]. We briefly consider two examples.

Mixtures of HMM Experts

A first possible approach is to consider a model M that is a mixture distribu-
tion (2.23) of n simpler HMMs’ M1, . . . ,Mn. For any sequence O, then,

P(O|M) =
n∑
i=1

λiP(O|Mi), (9.8)

where the mixture coefficients λi satisfy λi ≥ 0 and
∑
i λi = 1. In generative

mode, sequences are produced at random by each individual HMM, and Mi
is selected with probability λi. Such a system can be viewed as a larger sin-
gle HMM, with a starting state connected to each one of the HMMs’ Mi, with
transition probability λi (figure 8.5). As we have seen in chapter 8, this type
of model is used in [334] for unsupervised classification of globin protein se-
quences. Note that the parameters of each submodel can be computed by an
NN to create an HMM/NN hybrid architecture. Since the HMM experts form a
larger single HMM, the corresponding hybrid architecture is identical to what
we saw in section 9.2. The only peculiarity is that states have been replicated,
or grouped, to form different submodels. One further step is to have variable
mixture coefficients that depend on the input sequence or some other relevant
information. These mixture coefficients can be computed as softmax outputs
of an NN, as in the mixture-of-experts architecture of [277].

Mixtures of Emission Experts

A different approach is to modulate a single HMM by considering that the
emission parameters eiX should also be a function of the additional input I .
Thus eiX = P(i,X, I). Without any loss of generality, we can assume that P is a
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Input: HMM states

Output emission distribution

Emission
experts

Hidden layer

Input: external or context

Control network

Figure 9.11: Schematic Representation of a General HMM/NN Architecture in Which the HMM Pa-
rameters Are Computed by an NN of Arbitrary Complexity That Operates on State Information,
but Also on Input or Context. The input or context is used to modulate the HMM parameters,
for instance, by switching or mixing different parameter experts. For simplicity, only emission
parameters are represented, with three emission experts and a single hidden layer. Connections
from the HMM states to the control network, and from the input to the hidden layer, are also
possible.

mixture of n emission experts Pj

P(i,X, I)=
n∑
j=1

λj(i,X, I)Pj(i,X, I). (9.9)

In many interesting cases, λj is independent of X, resulting in the probability
vector equation over the alphabet

P(i, I) =
n∑
j=1

λj(i, I)Pj(i, I). (9.10)

If n = 1 and P(i, I) = P(i), we are back to a single HMM. An important special
case is derived by further assuming that λj does not depend on i, and Pj(i,X, I)
does not depend on I explicitly. Then

P(i, I)=
n∑
j=1

λj(I)Pj(i). (9.11)

This provides a principled way to design the top layers of general hybrid
HMM/NN architectures, such as the one depicted in figure 9.11.
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The components Pj are computed by an NN, and the mixture coefficients
by another gating NN. Naturally, many variations are possible and, in the most
general case, the switching network can depend on the state i, and the dis-
tributions Pj on the input I . In the case of protein modeling, if the switch-
ing depends on position i, the emission experts could correspond to different
types of regions, such as hydrophobic and hydrophilic, rather than different
subclasses within a protein family.

Learning

For a given setting of all the parameters, a given observation sequence, and
a given input vector I , the general HMM/NN hybrid architectures reduce to a
single HMM. The likelihood of a sequence, or some other measure of its fitness,
with respect to such an HMM can be computed by dynamic programming. As
long as it is differentiable in the model parameters, we can then backpropagate
the gradient through the NN, including the portion of the network depending
on I , such as the control network of figure 9.11. With minor modifications,
this leads to learning algorithms similar to those described above. This form
of learning encourages cooperation between the emission experts of figure
9.11. As in the usual mixture-of-experts architecture [277], it may be useful
to introduce some degree of competition among the experts, so that each of
them specializes on a different subclass of sequences.

When the input space has been selected but the value of the relevant input
I is not known, it is possible to learn its values together with the model pa-
rameters using Bayesian inversion. Consider the case where there is an input
I associated with each observation sequence O, and a hybrid model with pa-
rameters w, so that we can compute P(O|I,w). Let P(I) and P(w) denote our
priors on I and w. Then

P(I|O,w) = P(O|I,w)P(I)
P(O|w) , (9.12)

with

P(O|w) =
∫
I
P(O|I,w)P(I)dI. (9.13)

The probability of the model parameters, given the data, can then be calcu-
lated, again using Bayes’s theorem:

P(w|D) = P(D|w)P(w)
P(D)

= [
∏
O P(O|w)]P(w)

P(D)
, (9.14)

assuming the observations are independent. These parameters can be opti-
mized by gradient descent on − log P(w|D). The main step is the evaluation
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Figure 9.12: A Schematic Model of the Structure of a Typical Human Antibody Molecule Com-
posed of Two Light (L) and Two Heavy (H) Polypeptide Chains. Interchain and intrachain disul-
fide bonds are indicated (S). Cysteine residues are associated with the bonds. two identical active
sites for antigen binding, corresponding to the variable regions, are located in the arms of the
molecule.

of the likelihood P(O|w) and its derivatives with respect to w, which can be
done by Monte Carlo sampling. The distribution on the latent variables I is cal-
culated by (9.12). The work in [374] is an example of such a learning approach.
The density network used for protein modeling can be viewed essentially as a
special case of HMM/NN hybrid architecture where each emission vector acts
as a softmax transformation on a low-dimensional, real “hidden” input I , with
independent Gaussian priors on I and w. The input I modulates the emission
vectors, and therefore the underlying HMM, as a function of sequence.

9.5.2 Simulation Results

We now review a simple application of the principles behind HMM/NN single-
model hybrid architectures, demonstrated in [40], on the immunoglobulin pro-
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tein family. Immunoglobulins, or antibodies, are proteins produced by B cells
that bind with specificity to foreign antigens in order to neutralize them or
target their destruction by other effector cells. The various classes of im-
munoglobulins are defined by pairs of light and heavy chains that are held
together principally by disulfide bonds. Each light and heavy chain molecule
contains one variable (V) region and one (light) or several (heavy) constant (C)
regions (figure 9.12). The V regions differ among immunoglobulins, and pro-
vide the specificity of the antigen recognition. About one third of the amino
acids of the V regions form the hypervariable sites, responsible for the diver-
sity of the vertebrate immune response. The database is the same as that used
in [41], and consists of human and mouse heavy chain immunoglobulin V re-
gion sequences from the Protein Identification Resources (PIR) database. It cor-
responds to 224 sequences with minimum length 90, average length N = 117,
and maximum length 254.

The immunoglobulin V regions were first modeled using a single HMM [41],
similar to the one in figure 7.3, containing a total of 52N + 23 = 6107 ad-
justable parameters. Here we consider a hybrid HMM/NN architecture with
the following characteristics. The basic model is an HMM with the architecture
of figure 7.3. All the main-state emissions are calculated by a common NN with
two hidden units. Likewise, all the insert-state emissions are calculated by a
common NN with one hidden unit. Each state transition distribution is calcu-
lated by a different softmax network. Neglecting edge effects, the total number
of parameters of this HMM/NN architecture is 1507: (117 × 3 × 3) = 1053 for
the transitions and (117 × 3 + 3 + 3 × 20 + 40) = 454 for the emissions, in-
cluding biases. This architecture is used for demonstration purposes and is
not optimized. We suspect that the number of parameters could be further
reduced.

The hybrid architecture is then trained online, using both gradient descent
and the corresponding Viterbi version. The training set consists of a random
subset of 150 sequences identical to the training set used in the experiments
with a simple HMM. All weights from the input to the hidden layer are initial-
ized with independent Gaussians, with mean 0 and standard deviation 1. All
the weights from the hidden layer to the output layer are initialized to 1. This
yields a uniform emission probability distribution on all the emitting states.2

Note that if all the weights are initialized to 1, including those from input layer
to hidden layer, then the hidden units cannot differentiate from one another.
The transition probabilities out of insert or delete states are initialized uni-
formly to 1/3. We introduce, however, a small bias along the backbone that

2With Viterbi learning, this is probably better than a nonuniform initialization, such as the
average composition, since a nonuniform initialization may introduce distortions in the Viterbi
paths.
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1 24
F37262 ---------------------------AELM--KPGASVKISCKATG--YKFSS----Y--------WIEWVKQRPGHGLEWIGENL-
B27563 ----------------------LQQPGAELV--KPGASVKLSCKASG--YTFTN----Y--------WIHWVKQRPGRGLEWIGRID-
C30560 -------------------QVHLQQSGAELV--KPGASVKISCKASG--YTFTS----Y--------WMNWVKQRPGQGLEWIGEID-
G1HUDW -------------------QVTLRESGPALV--RPTQTLTLTCTFSG--FSLSGetmc----------VAWIRQPPGEALEWLAWDI-
S09711 mkhlwfflllvraprwclsQVQLQESGPGLV--KPSETLSVTCTVSG------------gsvsssglYWSWIRQPPGKGPEWIGYIY-
B36006 ---------------------------------------KISCKGSG--YSFTS----Y--------WIGWVRQMPGKGLEWMGIIY-
F36005 -------------------QVQLVESGGGVV--QPGRSLRLSCAASG--FTFSS----Y--------AMHWVRQAPGKGLEWVAVIS-
A36194 mgwsfiflfllsvtagvhsEVQLQQSGAELV--RAGSSVKMSCKASG--YTFTN----Y--------GINWVKQRPGQGLEWIGYQS-
A31485 -------------------EVKLDETGGGLV--QPGRPMKLSCVASG--FTFSD----Y--------WMNWVRQSPEKGLEWVAQIRN
D33548 -------------------QVQLVQSGAEVK--KPGASVKVSCEASG--YTFTG----H--------YMHWVRQAPGQGLEWMGWIN-
AVMSJ5 -------------------EVKLLESGGGLV--QPGGSLKLSCAASG--FDFSK----Y--------WMSWVRQAPGKGLEWIGEIH-
D30560 -------------------QVQLKQSGPSLV--QPSQSLSITCTVSD--FSLTN----F--------GVHWVRQSPGKGLEWLGVIW-
S11239 melglswifllailkgvqcEVQLVESGGGLV--QPGRSLRLSCAASG--FTFND----Y--------AMHWVRQAPGKGLEWVSGIS-
G1MSAA -------------------EVQLQQSGAELV--KAGSSVKMSCKATG--YTFSS----Y--------ELYWVRQAPGQGLEDLGYIS-
I27888 -------------------EVQLVESGGGLV--KPGGSLRLSCAASG--FTFSS----Y--------AMSWVRQSPEKRLEWVADIS-
PL0118 ---------------------QLQESGSGLV--KPSQTLSLTCAVSGgsISSGG----Y--------SWSWIRQPPGKGLEWIGYIY-
PL0122 -------------------EVQLVESGGGLV--QPGGSLKLSCAASG--FTFSG----S--------AMHWVRQASGKGLEWVGRIRS
A33989 -------------------DVQLDQSESVVI--KPGGSLKLSCTASG--FTFSS----Y--------WMSWVRQAPGKGLQWVSRISS
A30502 -------------------EVQLQQSGPELV--KPGASVKMSCKASG--DTFTS----S--------VMHWVKQKPGQGLEWIGYIN-
PH0097 -------------------DVKLVESGGGLV--KPGGSLKLSCAASG--FTFSS----Y--------IMSWVRQTPEKRLEWVATIS-

60 70 80 90 100
F37262 -P-G-SDSTKYNEKFKGKATFTADTSSNTAYMQLSSLTSEDSAVYYCARnyygssnlfay---------------------------
B27563 -P-N-SGGTKYNEKFKNKATLTINKPSNTAYMQLSSLTSDDSAVYYCARgydysyya-------------MDYWGQGTsvtvss---
C30560 -P-S-NSYTNNNQKFKNKATLTVDKSSNTAYMQLSSLTSEDSAVYYCARwgtgsswg------------WFAYWGQGTlvtvsa---
G1HUDW ----lNDDKYYGASLETRLAVSKDTSKNQVVLSMNTVGPGDTATYYCARscgsq---------------YFDYWGQGIlvtvss---
S09711 ---Y-SGSTNYNPSLRSRVTISVDTSKNQFSLKLGSVTAADTAVYYCARvlvsrtsisqysy-------YMDVWGKGTtvtvss---
B36006 -P-G-DSDTRYSPSFQGQVTISADKSISTAYLQWSSLKASDTAMYYCARrrymgygdqa-----------FDIWGQGTmvtvss---
F36005 -Y-D-GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR--------------DRKASDAFDIWGQGTmvtvss---
A36194 -T-G-SFYSTYNEKVKGKTTLTVDKSSSTAYMQLRGLTSEDSAVYFCARsnyyggsys------------FDYWGQGTtltvss---
A31485 KP-Y-NYETYYSDSVKGRFTISRDDSKSSVYLQMNNLRVEDMGIYYCTGsyyg-----------------MDYWGQGTsvtvss---
D33548 -P-N-SGGTNYAEKFQGRVTITRDTSINTAYMELSRLRSDDTAVYYCARasycgydcyy----------FFDYWGQGTlvtvss---
AVMSJ5 -P-D-SGTINYTPSLKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCARlhyygyn---------------AYWGQGTlvtvsae--
D30560 -P-R-GGNTDYNAAFMSRLSITKDNSKSQVFFKMNSLQADDTAIYYCTKegyfgnydya-----------MDYWGQGTsvtvss---
S11239 --wD-SSSIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDMALYYCVKgrdyydsggyftva-------FDIWGQGTmvtvss---
G1MSAA -S-S-SAYPNYAQKFQGRVTITADESTNTAYMELSSLRSEDTAVYFCAVrvisryfdg---------------WGQGTlv-------
I27888 -S-G-GSFTYYPDTVTGRFTISRDDAQNTLYLEMNSLRSEDTAIYYCTRdeedpttlvapfa--------MDYWGQGTsvtvs----
PL0118 ---H-SGSTYYNPSLKSRVTISVDRSKNQFSLKLSSVTAADTAVYYCAR--------------------------------------
PL0122 KA-N-SYATAYAASVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTR--------------------------------------
A33989 KA-D-GGSTYYADSVKGRFTISRDNNNNKLYLQMNNLQTEDTAVYYCTRearwggw-------------YFEHWGQGTmvtvts---
A30502 -P-Y-NDGTKYNEKFKGKATLTSDKSSSTAYMELSSLTSEDSAVYYCARgg-------------------FAYWGQGTlvtv-----
PH0097 -S-G-GRYTYYSDSVKGRFTISRDNAKNTLYLQMSSLRSEDTAMYYSTAsgds-----------------FDYWGQGTtltvssak-

Figure 9.13: Multiple Alignment of 20 Immunoglobulin Sequences, Randomly Extracted from
the Training and Validation Data Sets. Validation sequences: F37262, G1HUDW, A36194,
A31485, D33548, S11239, I27888, A33989, A30502. Alignment is obtained with a hybrid
HMM/NN architecture trained for 10 cycles, with two hidden units for the main-state emissions
and one hidden unit for the insert-state emissions. Lowercase letters correspond to emissions
from insert states. Note that the signal peptide on some of the sequences is captured as repeated
transitions through the first insert state in the model.

favors main-to-main transitions, in the form of a nonsymmetric Dirichlet prior.
This prior is equivalent to introducing a regularization term in the objective
function that is equal to the logarithm of the backbone transition path. The
regularization constant is set to 0.01 and the learning rate to 0.1. Typically, 10
training cycles are more than sufficient to reach equilibrium.

In figure 9.13, we display the multiple alignment of 20 immunoglobulin
sequences, selected randomly from both the training and the validation sets.
The validation set consists of the remaining 74 sequences. This alignment
is very stable between 5 and 10 epochs. It corresponds to a model trained
using Viterbi learning for 10 epochs. This alignment is similar to the multiple
alignment previously derived with a simple HMM, having more than four times
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as many parameters. The algorithm has been able to detect most of the salient
features of the family. Most important, the cysteine residues (C) toward the
beginning and the end of the region (positions 24 and 100 in this multiple
alignment), which are responsible for the disulfide bonds that hold the chains,
are perfectly aligned. The only exception is the last sequence (PH0097), which
has a serine (S) residue in its terminal portion. This is a rare but recognized
exception to the conservation of this position. A fraction of the sequences
in the data set came with a signal peptide sequence in the N-terminal (see
section 6.4). We did not remove them prior to training. The model is capable
of detecting and accommodating these signal peptides by treating them as
initial repeated inserts, as can be seen from the alignment of three of the
sequences (S09711, A36194, S11239). This multiple alignment also contains a
few isolated problems, related in part to the overuse of gaps and insert sates.
Interestingly, this is most evident in the hypervariable regions, for instance, at
positions 30–35 and 50–55. These problems should be eliminated with a more
careful selection of hybrid architecture and/or regularization. Alignments in
this case did not seem to improve with use of gradient descent and/or a larger
number of hidden units, up to four.

In figure 9.14, we display the activity of the two hidden units associated
with each main state. For most states, at least one of the activities is sat-
urated. The activities associated with the cysteine residues responsible for
the disulfide bridges (main states 24 and 100) are all saturated and are in the
same corner (−1,+1). Points close to the center (0,0) correspond to emission
distributions determined by the bias only.

9.5.3 Summary

A large class of hybrid HMM/NN architectures has been described. These archi-
tectures improve on single HMMs in two complementary directions. First, the
NN reparameterization provides a flexible tool for the control of model com-
plexity, the introduction of priors, and the construction of an input-dependent
mechanism for the modulation of the final model. Second, modeling a data set
with multiple HMMs allows the coverage of a larger set of distributions and the
expression of nonstationarity and correlations inaccessible to single HMMs.
Similar ideas have been introduced in [58] using the notion of input/output
HMMs (IOHMMs). The HMM/NN approach is meant to complement rather than
replace many of the existing techniques for incorporating prior information in
sequence models.

Two important issues for the success of a hybrid HMM/NN architecture on
a real problem are the design of the NN architecture and the selection of the
external input or context. These issues are problem-dependent and cannot
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Figure 9.14: Activity of the Two Hidden Units Associated with the Emission of the Main States.
The two activities associated with the cysteines (C) are in the upper left corner, almost overlap-
ping, with coordinates (−1,+1).

be handled with generality. We have described some examples of architec-
tures, using mixture ideas for the design of the NN component. Different
input choices are possible, such as contextual information, sequences over a
different alphabet, or continuous parameterization variables [374].

The methods described in this section are not limited to HMMs, but can
be applied to any class of probabilistic models. The basic idea is to calculate
and possibly modulate the parameters of the models using NNs (or any other
flexible reparameterization). Several implicit examples of hybrid architectures
can be found in the literature (for example [395]). In fact, the NN architectures
of chapter 5 can be viewed as hybrid architectures. In the standard regression
case, a Gaussian model is used for each point in input space. Each Gaussian
model is parameterized by its mean. The standard NN architecture simply
computes the mean at each point. Although the principle of hybrid modeling is
not new, by exploiting it systematically in the case of HMMs, we have generated
new classes of models. In other classes the principle has not yet been applied
systematically, for example, probabilistic models of evolution (chapter 10) and
stochastic grammars (chapter 11). In the next section, we closely follow [37]



Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 255

and apply similar techniques to a larger class of probabilistic models, namely
to BIOHMMs and the problem of predicting protein secondary structure.

9.6 Bidirectional Recurrent Neural Networks for Protein Sec-
ondary Structure Prediction

Protein secondary structure prediction (see also section 6.3) can be formulated
as the problem of learning a synchronous sequential translation from strings
in the amino acid alphabet to strings written in the alphabet of structural cate-
gories. Because biological sequences are spatial rather than temporal, we have
seen that BIOHMMs are an interesting new class of graphical models for this
problem. In particular, they offer a sensible alternative to methods based on a
fixed-width input window. The expressive power of these models enables them
to capture distant information in the form of contextual knowledge stored into
hidden state variables. In this way, they can potentially overcome the main dis-
advantage of feedforward networks, namely the linear growth of the number
of parameters with the window size. Intuitively, these models are parsimo-
nious because of the implicit weight sharing resulting from their stationarity;
i.e., parameters do not vary over time.

We have used BIOHMMs directly to predict protein secondary structure
with some success [36]. As graphical models, however, BIOHMMs contain
undirected loops and therefore require a computationally intensive evidence-
propagation algorithm (the junction tree algorithm [287]), rather than the sim-
pler Pearl’s algorithm for loopless graphs such as HMMs (see also appendix
C). Thus to speed up the algorithm, we can use the technique of the previous
section and use neural networks, both feedforward and recurrent, to reparam-
eterize the graphical model.

9.6.1 Bidirectional Recurrent Neural Nets

Letting t denote position within a protein sequence, the overall model can
be viewed as a probabilistic model that outputs, for each t, a vector Ot =
(o1,t , o2,t , o3,t) with oi,t ≥ 0 and

∑
i oi,t = 1. The oi,ts are the secondary struc-

ture class membership probabilities. The output prediction has the functional
form

Ot = η(Ft, Bt, It) (9.15)

and depends on the forward (upstream) context Ft , the backward (downstream
context) Bt , and the input It at time t. The vector It ∈ IRk encodes the external
input at time t. In the most simple case, where the input is limited to a single
amino acid, k = 20, by using the orthogonal binary encoding (see section 6.1).
In this case, it is not necessary to include an extra input symbol to represent
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the terminal portions of the protein. Larger input windows extending over
several amino acids are of course also possible. The function η is realized by
a neural network Nη (see center and top connections in figure 9.15). Thus to
guarantee a consistent probabilistic interpretation, the three output units of
network Nη are obtained as normalized exponentials (or softmax)

oi,t = exp(neti,t)∑3
l=1 exp(netl,t)

i = 1,2,3; (9.16)

where neti,t is the activation of the ith output unit at position t. The perfor-
mance of the model can be assessed using the usual relative entropy between
the estimated and the target distribution.

The novelty of the model is in the contextual information contained in the
vectors Ft ∈ IRn and especially in Bt ∈ IRm. These satisfy the recurrent bidi-
rectional equations

Ft = φ(Ft−1, It)
Bt = β(Bt+1, It)

(9.17)

Hereφ(·) and β(·) are learnable nonlinear state transition functions. They can
be implemented in different forms, but here we assume that they are realized
by two NNs, Nφ and Nβ (left and right subnetworks in figure 9.15), with n
and m logistic output units, respectively. Thus, Nφ and Nβ are fed by n+ k
and m + k inputs, respectively. Here also larger input windows are possible,
especially in combination with the weight-sharing approach described in [445],
and different inputs could be used for the computation of Ft , Bt , and Ot . The
forward chain Ft stores contextual information contained to the left of time t
and plays the same role as the internal state in standard RNNs. The novel part
of the model is the presence of an additional backward chain Bt , in charge
of storing contextual information contained to the right of time t, i.e. in the
future. The actual form of the bidirectional dynamics is controlled by the
connection weights in the subnetworks Nφ and Nβ. As we shall see, these
weights can be adjusted using a maximum-likelihood approach. Since (9.17)
involves two recurrences, two corresponding boundary conditions must be
specified, at the beginning and the end of the sequence. For simplicity, here
we use F0 = BN+1 = 0, but it is also possible to adapt the boundaries to the
data, extending the technique suggested in [184] for standard RNNs.

The discrete time index t ranges from 1 to N, the total length of the protein
sequence being examined. Hence the probabilistic output Ot is parameterized
by a RNN and depends on the input It and on the contextual information, from
the entire protein, summarized into the pair (Ft , Bt). In contrast, in a conven-
tional NN approach this probability distribution depends only on a relatively
short subsequence of amino acids. Intuitively, we can think of Ft and Bt as
“wheels” that can be “rolled” along the protein. To predict the class at posi-
tion t, we roll the wheels in opposite directions from the N and C terminus up



Bidirectional Recurrent Neural Networks for Protein Secondary Structure Prediction 257

t-th amino acid

ϕ(.) β(.)
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F Bt
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t

Figure 9.15: Bidirectional Recursive Neural Network Architecture. Inputs correspond to amino
acid letters in a given protein sequence. Outputs correspond to secondary structure classifica-
tion into alpha-helices, beta-sheets, and coils.

to position t and then combine what is read on the wheels with It to calculate
the proper output using η.

The global mapping from the input amino acid sequence to the sequence
of output categories can be described by the graphical model shown in figure
9.16. The network represents the direct dependencies among the variables
It, Ft, Bt ,Ot, unrolled over time for t = 1, . . . ,N. Each node is labeled by one
of the variables and arcs represent direct functional dependencies. This graph
represents the underlying Bayesian network BIOHMMs except that the inter-
nal relationships amongst It, Ft, Bt,Ot here are deterministic((9.15) and (9.17)),
rather than probabilistic. The overall BRNN model, however, is a probabilistic
model. As we have seen, inference in the BIOHMMs is tractable but requires
time complexity of O(n3) for each time step (here n is the typical number
of states in the chains), limiting their practical applicability to the secondary
structure prediction task [36].

An architecture resulting from (9.15) and (9.17) is shown in figure 9.15
where, for simplicity, all the NNs have a single hidden layer. The hidden state
Ft is copied back to the input. This is graphically represented in figure 9.15
using the causal shift operator q−1 that operates on a generic temporal variable
Xt and is symbolically defined as Xt−1 = q−1Xt . Similarly, q, the inverse (or
noncausal) shift operator is defined Xt+1 = qXt and q−1q = 1. As shown in
Figure 9.15, a noncausal copy is performed on the hidden state Bt . Clearly,
removal of {Bt} would result in a standard causal RNN.
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The number of degrees of freedom of the model depends on two factors:
(1) the dimensions n andm of the forward and backward state vectors; (2) the
number of hidden units in the three feedforward networks realizing the state
transition and the output functions (see figure 9.15). It is important to remark
that the BRNN has been defined as a stationary model; that is, the connection
weights in the networks realizing β(·), φ(·) and η(·) do not change over time,
i.e. with respect to position along the protein. This is a form of weight sharing
that reduces the number of free parameters and the risk of overfitting, without
necessarily sacrificing the capability to capture distant information.

9.6.2 Inference and Learning

Since the graph shown in figure 9.16 is acyclic, nodes can be topologically
sorted, defining unambiguously the global processing scheme. Using the net-
work unrolled through time, the BRNN prediction algorithm updates all the
states Ft from left to right, starting from F0 = 0. Similarly, states Bt are up-
dated from right to left. After forward and backward propagations have taken
place, the predictions Ot can be computed. The forward and backward propa-
gations need to be computed from end to end only once per protein sequence.
As a result, the time complexity of the algorithm is O(NW), where W is the
number of weights and N the protein length. This is the same complexity as
feedforward networks fed by a fixed-size window. In the case of BRNNs, W
typically grows as O(n2) and the actual number of weights can be reduced
by limiting the number of hidden units in the subnetworks for φ(·) and β(·).
Thus, inference in BRNNs is more efficient than in bidirectional IOHMMs, where
the complexity is O(Nn3) [36].

Learning can be formulated as a maximum likelihood estimation problem,
where the log-likelihood is essentially the relative entropy function between
the predicted and the true conditional distribution of the secondary structure
sequence given the input amino acid sequence

� =
∑

sequences

N∑
t=1

zi,t log oi,t , (9.18)

with zi,t = 1 if the secondary structure at position t is i and zi,t = 0 otherwise.
The optimization problem can be solved by gradient ascent. The only differ-
ence with respect to standard RNNs is that gradients must be computed by
taking into account noncausal temporal dependencies. Because the unrolled
network is acyclic, the generalized backpropagation algorithm can be derived
as a special case of the backpropagation through structure algorithm [188].
Intuitively, the error signal is first injected into the leaf nodes, corresponding
to the output variables Ot . The error is then propagated through time in both
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Input: whole protein sequence

output: sequence of secondary structure symbols
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Figure 9.16: Direct Dependencies Among the Variables Involved in a Bidirectional BRNN. The
boundary conditions are provided by F0 = BN+1 = 0 and by the inputs associated with the
current protein sequence.

directions, by following any reverse topological sort of the unrolled network
(see figure 9.16). Obviously, this step also involves backpropagation through
the hidden layers of the NNs. Since the model is stationary, weights are shared
among the different replicas of the NNs at different time steps. Hence, the
total gradient is simply obtained by summing all the contributions associated
with different time steps.

To speedup convergence, it was found convenient to adopt an online
weight-updating strategy. Once gradients relative to a single protein have
been computed, weights are immediately updated. This scheme was enriched
also with a heuristic adaptive learning rate algorithm that progressively re-
duces the learning rate if the average error reduction within a fixed number of
epochs falls below a given threshold.

9.6.3 Long-range Dependencies

One of the principal difficulties in training standard RNNs is the problem of
vanishing gradients [57]. Intuitively, in order to contribute to the output at
position or time t, the input signal at time t−τ must be propagated in the for-
ward chain through τ replicas of the NN that implements the state transition
function. However, during gradient computation, error signals must be prop-
agated backward along the same path. Each propagation can be interpreted as
the product between the error vector and the Jacobian matrix associated with
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the transition function. Unfortunately, when the dynamics develop attractors
that allow the system to store past information reliably, the norm of the Ja-
cobian is < 1. Hence, when τ is large, gradients of the error at time t with
respect to inputs at time t − τ tend to vanish exponentially. Similarly, in the
case of BRNNs, error propagation in both the forward and the backward chains
is subject to exponential decay. Thus, although the model has in principle the
capability of storing remote information, such information cannot be learnt ef-
fectively. Clearly, this is a theoretical argument and its practical impact needs
to be evaluated on a per-case basis.

In practice, in the case of proteins, the BRNN can reliably utilize input infor-
mation located within about ±15 amino acids (i.e., the total effective window
size is about 31). This was empirically evaluated by feeding the model with
increasingly long protein fragments. We observed that the average predictions
at the central residues did not significantly change if fragments were extended
beyond 41 amino acids. This is an improvement over standard NNs with input
window sizes ranging from 11 to 17 amino acids [453, 445, 290]. Yet there is
presumably relevant information located at longer distances that these models
have not been able to discover so far.

To limit this problem, a remedy was proposed motivated by recent stud-
ies [364] suggesting that the vanishing-gradients problem can be mitigated by
the use of an explicit delay line applied to the output, which provides shorter
paths for the effective propagation of error signals. Unfortunately, this idea
cannot be applied directly to BRNNs since output feedback, combined with
bidirectional propagation, would generate cycles in the unrolled network. A
similar mechanism, however, can be implemented using the following modi-
fied dynamics:

Ft = φ(Ft−1, Ft−2, . . . , Ft−s, It)
Bt = β(Bt+1, Bt+2, . . . , Bt+s, It).

(9.19)

The explicit dependence on forward or backward states introduces short-
cut connections in the graphical model, forming shorter paths along which
gradients can be propagated. This is akin to introducing higher-order Markov
chains in the probabilistic version. However, unlike Markov chains where the
number of parameters would grow exponentially with s, in the present case
the number of parameters grows only linearly with s. To reduce the number
of parameters, a simplified version of (9.19) limits the dependencies to state
vectors located s residues away from t:

Ft = φ(Ft−1, Ft−s, It)
Bt = β(Bt+1, Bt+s , It).

(9.20)

Another variant of the basic architecture that also lets us increase the effective
window size consists in feeding the output networks with a window in the
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Figure 9.17: Distant Information Exploited by the BRNN. The horizontal axis represents τ,
the distance from a given position beyond which all entries are set to null values. Each curve
represents a normalized row of the test-set confusion matrix.

forward and backward state chains. In this case, the prediction is computed
as

Ot = η(Ft−s, . . . , Ft+s, Bt−s, . . . , Bt+s , It). (9.21)

Notice that the window can extend in the past and the future of t on both
vectors Ft and Bt .
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9.6.4 Implementation and Results

BRNNs have been used to implement SSpro, a secondary structure prediction
server available through the Internet3. In addition to BRNNs, SSpro uses other
features that over the years have proved to be useful for secondary structure
prediction, such as ensembles and profiles (see section 6.3). Profiles, in partic-
ular, are most useful when used at the input level. Details of experiments and
performance analysis of the first version of SSpro which used BLAST-generated
profiles are given in [37]. The most recent version of SSpro uses PSIBLAST pro-
files and achieves a performance of about 80% correct prediction. SSpro has
been ranked among the top predictors both at the 2000 CASP blind prediction
competition and through the independent automatic evaluation server EVA of
Rost (http://dodo.bioc.columbia.edu/∼eva/), based on the new sequences that
are deposited each week in the PDB.

Beyond the performance results, to study the capabilities of BRNNs models
to capture long-ranged information a number of experiments were performed.
For each protein and for each amino acid position t, we fed the BRNN mixture
described above with a sequence obtained by replacing all inputs outside the
range [t−τ, t+τ] with null values. The experiment was repeated for different
values of τ from 0 to 23. Figure 9.17 shows the results. Each diagram is
a normalized row of the test set confusion table, for the semi-window size
τ ranging from 0 to 23. So for example the line labeled H → C in the first
diagram is the percentage of helices classified as coils, as a function of τ. The
curves are almost stable for τ > 15. Although the model is not sensitive to
very distant information, it should be remarked that typical feedforward nets
reported in the literature do not exploit information beyond τ = 8.

Given the large number of protein sequences available through genome and
other sequencing projects, even small percentage improvements in secondary
structure prediction are significant for structural genomics. Machine learning
algorithms combined with graphical models and their NN parameterizations
are one of the best approaches so far in this area. BRNNs and the related ideas
presented here begin to address problems of long-ranged dependencies. As a
result, BRNNs have now been developed to predict a number of other struc-
tural features including amino acid partners in beta sheets, number of residue
contacts, and solvent accessibility [45, 429]. These structural modules are part
of a broader strategy towards 3D prediction based on the intermediary predic-
tion of contact maps, with both low (secondary structure) and high (amino
acid) resolution, starting from the primary sequence and the predicted struc-
tural features. Indeed, prediction of the arrangement of secondary structure
elements with respect to each other in three-dimensions would go a long way

3SSpro is accessible through http://promoter.ics.uci.edu/BRNN-PRED/.
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towards the prediction of protein topology and three-dimensional structure.
There are several directions in which this work could be extended including

many architectural variations. In addition to the use of larger input windows
for It , one may consider non-symmetrical chains for the past and the future,
and the use of priors on the parameters and/or the architecture together with
a maximum a posteriori learning approach. It may also be advantageous to
use an array of “wheels,” instead of just two wheels, of various memory capac-
ity, rolling in different directions along the protein and possibly over shorter
distances. It is also worth noting that using multi-layered perceptrons for
implementing β(.) and φ(.) is just one of the available options. For exam-
ple, recurrent radial basis functions or a generalization of second-order RNN
[208] are easily conceivable alternative parameterization. Finally, the ideas de-
scribed in this section can be applied to other problems in bioinformatics, as
well as other domains, where non-causal dynamical approaches are suitable.
Obvious candidates for further tests of the general method include the predic-
tion of protein functional features, such as signal peptides.
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Chapter 10

Probabilistic Models of
Evolution: Phylogenetic Trees

10.1 Introduction to Probabilistic Models of Evolution

This chapter deals with evolution and the inference of phylogenetic trees from
sequence data. It is included of course because sequence evolution is a cen-
tral topic in computational molecular biology, but also because the ideas and
algorithms used are again a perfect illustration of the general probabilistic
inference framework of chapter 2.

Evolutionary relationships between organisms—existing or extinct—have
been inferred using morphological and/or biochemical characteristics since
the time of Darwin. Today, phylogenetic trees are commonly derived from
DNA and protein sequences [182]. Due to the extreme stability of the DNA
molecule, it can be extracted in large intact pieces even from organisms that
have been dead for many years [251]. The extinct elephant-like mammoth has
been phylogenetically mapped by its DNA, and for deceased humans precise
family relationships can also be established. Among the most recent examples
are the proof of the identity of the last Russian tsar, Nicholas II [211, 274], and
the disproof of the story of Anna Anderson, who claimed she was the tsar’s
missing daughter Anastasia [212, 477]. The bones (and the DNA) of the tsar
had been lying in the soil since 1918.

The literature contains a number of methods for inferring phylogenetic
trees from sequence data. Most of the approaches are variations on two major
methods: parsimony methods [181] and likelihood methods [178, 519, 269].
Not surprisingly, likelihood methods are based on a probabilistic model of the
evolutionary process (see also [295]). Actually, the term “likelihood methods”

265
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is typically used in this field in connection with a particular class of probabilis-
tic models. Although parsimony methods are often described independently
of any underlying model of evolution, we will show that they can be viewed as
approximations to likelihood methods.

From the general Bayesian framework and the Cox–Jaynes axioms, we know
that in order to infer a phylogenetic tree from a set of sequences, we must be-
gin with a probabilistic model of evolution. Maximum likelihood (ML) is then
the most basic inference step we can perform with respect to such a model.
ML encompasses all the other approaches currently found in the literature,
including the ML approach in [178] with respect to a particular model class.
As we have seen, HMMs are not a complete model of the evolutionary pro-
cess. Evolution can proceed at the molecular level not only by insertions and
deletions but also by substitutions, inversions, and transpositions. Therefore
different models must be used. But first we need some elementary background
and notation for trees.

10.1.1 Trees

A tree T is a connected acyclic graph. In a tree every two points are joined
by a unique path, and the number of vertices always exceeds the number of
edges by exactly 1. A tree is binary if each vertex has either one or three
neighbors. A tree is rooted if a node r has been selected and termed the root.
In phylogenetic trees, the root is intended to represent an ancestral sequence
from which all the others descend. Two important aspects of phylogenetic
trees, both rooted and unrooted, are the topology and the branch length. The
topology refers to the branching pattern of the tree associated with the times
of divergence. The branch length is often used to represent in some way the
time distance between events (figure 10.1).

10.1.2 Probabilistic Models

The most basic but still useful probabilistic model of evolution is again a vari-
ation of the simple dice model. We can imagine that starting from an ancestral
sequence, evolution proceeds randomly, using position-independent substitu-
tions only. If we look at a given fixed position i in the sequences, and if we let
χi(t) denote the letter at position i at time t, we can make the usual Markov
process assumption that the probability

piYX(t) = P(χi(t + s) = Y|χi(s) = X) (10.1)

is independent of s ≥ 0 for t > 0. Thus, for each position i, there is a prob-
ability piYX(t) that X is substituted into Y over an evolutionary period of time
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Figure 10.1: A Simple Binary Phylogenetic Tree. r is the root; dji is the time distance between
i and j; Xi is the letter assigned to the hidden vertex i. The observed letters are at the leaves at
the bottom. The probability of the substitution from vertex i to vertex j is pXjXi (dji).

t. Thus for each t and each position i we have a collection of |A| dice. To
simplify the model further, we shall, for now, make the additional approxi-
mation that the substitution probabilities are identical at all positions, so that
piYX(t) = pYX(t). Obviously, we must have pYX(t) ≥ 0 for any X,Y and any t,
and furthermore

∑
Y pYX(t) = 1. From (10.1), one must also have the Chapman–

Kolmogorov relation,

pYX(t + s) =
∑
Z∈A

pYZ(t)pZX(s), (10.2)

due to the independence of the events at time t and time s.

10.2 Substitution Probabilities and Evolutionary Rates

All that remains to specify the model entirely is to determine the substitu-
tion probabilities pYX(t). These are related to the substitution matrices, such
as PAM matrices, discussed in chapter 1. It is sensible to make the further
assumption that

lim
t→0+

pYX(t) = δ(Y,X) =
{

1 if Y = X
0 otherwise

. (10.3)

If we let P(t) denote the matrix P(t) = (pYX(t)), from (10.3) we can define
P(0) = Id, where Id is the |A| × |A| identity matrix. One can then show that
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each component of P(t) is differentiable, so that we can write P ′(t) = (p′YX(t)).
The process is now entirely specified by its right derivative at 0,

Q = P ′(0) = lim
t→0+

P(t)− Id
t

. (10.4)

This is because (10.4) implies that

P ′(t) =QP(t) = P(t)Q. (10.5)

To see this rapidly, just write P(t + dt) = P(t)P(dt) = P(t)(P(0) +Qdt) =
P(t)(Id+Qdt), the first equality resulting from (10.2) and the second from
(10.4), so that P(t + dt)− P(t) = P(t)Qdt. If we let Q = (qYX), from (10.5) the
final solution is given by

P(t) = eQ(t) = Id+
∞∑
n=1

Qntn

n!
. (10.6)

Note that if Q is symmetric, so is P , and vice versa. Such an assumption may
simplify calculations, but it is not biologically realistic and will not be used
here. Finally, a distribution column vector p = (pX) is stationary if P(t)p = p
for all times t. Thus, once in a stationary distribution, the process remains
in it forever. From (10.4), this implies that p is in the kernel of Q: Qp = 0.
And from (10.6) the two statements are in fact equivalent. If we assume that
the observed sequences have been produced with the system in its stationary
distribution, then p is easily estimated from the average composition of the
observed sequences.

To summarize, we have defined a class of probabilistic models for the evo-
lution of sequences. Such models are characterized by four assumptions:

1. At each site, evolution operates by substitution only, and therefore with-
out indels (insertions and deletions). All observed sequences must have
the same length.

2. Substitutions at each position are independent of one another.

3. Substitution probabilities depend only on the current state, and not on
the past history (Markov property).

4. The Markov process is the same for all positions.

None of these assumptions are satisfied by real DNA, where the sequence
length can change as a result of indels; evolution of different positions is not
independent; evolution rates are not uniform both in time and as a function
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of position; and, last, real DNA is subjected to recombination. But this consti-
tutes a useful first approximation. Many current research efforts concentrate
on relaxing some of these assumptions. The first two assumptions are prob-
ably the most difficult to relax. For indels, one can easily add a gap symbol
to the alphabet A within the present framework, although this is not entirely
satisfactory. In any case, to specify a model further within the class described
above, one must provide the matrix of rates Q.

10.3 Rates of Evolution

First note that the rate matrix Q is defined up to a multiplicative factor because
P(t) = exp(Qt) = exp[(λQ)(t/λ)] for any λ �= 0. In one simple subclass of
models, we assume that λdt is the probability that a substitution occurs at a
given position over a small time interval dt. Thus λ is the rate of substitution
per unit time. Furthermore, when a substitution occurs, a letter is chosen with
probability p = (pX). Thus we have

pYX(dt) = (1− λdt)δ(Y,X)+ λdtpY. (10.7)

This is equivalent to specifying the matrix Q by

qXX = λ(pX − 1) and qYX = λpY (10.8)

for any X and Y. From (10.8) and (10.6), or directly from (10.7) by noting that
e−λt is the probability of not having any substitutions at all over a period of
length t, we have

pYX(t) = e−λtδ(Y,X)+ (1− e−λt)pY. (10.9)

It is useful to note that the distribution p used in (10.7) can be chosen arbitrar-
ily. However, once chosen, it can be shown that it is the stationary distribution
of (10.9); hence the common notation used above. As above, p can be obtained
directly from the data if we assume that the data are at equilibrium.

Again, pYX(t) depends on t via the product λt only. In the absence of any
other evidence, we can choose λ = 1 and thus measure t in units of expected
numbers of substitutions. If λ is allowed to vary along each branch of the tree,
this is equivalent to measuring time with clocks running at different rates on
different branches. Thus the total length from the root to the leaves of the tree
need not be constant along all possible paths.

Another useful property of the process defined by (10.9) is that it is re-
versible in the sense that the substitution process looks the same forward and
backward in time. This is easily seen from the fact that (10.9) yields the bal-
ance equations

pYX(t)pX = pXY(t)pY. (10.10)

Reversibility is also satisfied by other probabilistic models of evolution [302].
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10.4 Data Likelihood

Given a set of sequences and an evolutionary probabilistic model, we can try
to find the most likely tree topology as well as the most likely lengths for the
branches [178, 519]. This explains the use of the expression “ML methods for
phylogeny.”

We first assume that we have K sequences over the alphabet A, all with the
same length N, and a corresponding given phylogenetic tree T with root r and
time lengths dji between adjacent vertices i and j. The first goal is to compute
the likelihood P(O1, . . . ,OK|T) according to the evolutionary Markovian mod-
els described above. Because of the independence assumption across column
positions, we have

P(O1, . . . ,OK|T) =
N∏
k=1

P(Ok1 , . . . ,O
k
K|T), (10.11)

where Okj represents the kth letter observed in the jth sequence. Therefore

we need to study only the term P(Ok1 , . . . ,O
k
K|T) associated with the column

k and with the letters Okj at the K leaves of the tree. In what follows, we
will use the generic notation O to denote the set of observed letters at a fixed
position. We can consider that at each vertex i of the tree there is a hidden
random variable χi representing the letter associated with vertex i. Thus a
phylogenetic tree can be viewed as a simple Bayesian network (appendix C)
with a tree structure in which the conditional probability of a node j, given its
parent i, is parameterized by the time distance dji in the form

P(χj = Y|χi = X) = pYX(dji). (10.12)

Thus all the well-known algorithms for Bayesian networks can be applied in
this simple case. In particular, the likelihood P(O|T) = P(Ok1 , . . . ,O

k
K|T) can be

computed in two ways: starting from the root or starting from the leaves.
Starting from the root, let (Xi) denote an assignment of letters to the in-

ternal nodes I other than the leaves, and including the root r . The letters
assigned to the internal nodes play of course the role of hidden variables, sim-
ilar to the HMM paths in chapter 7. In this notation, Xi is assigned to vertex i
and the notation is extended to include the letters observed at the leaves. The
probability of such a global assignment is easily computed:

P(O, (Xi)|T) = P((Xi)|T) = pr(Xr )
∏
i∈I

∏
j∈N+(i)

pYjXi(dji), (10.13)

where pr is the prior probability distribution for the letters at the root node.
N+(i) denotes the set of children of vertex i, the edges being oriented from
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the root to the leaves. Assuming that the process is at equilibrium, pr is the
stationary distribution p = pr and thus can be estimated from the average
composition. The observation likelihood is computed by summing over all
possible assignments:

P(O|T) =
∑
(Xi)
pr (Xr )

∏
I−{r}

∏
j∈N+(i)

pYjXi (dji). (10.14)

The sum above contains |A||T |−K terms and is computationally not efficient.
|T | is the number of trees.

The likelihood is computed more efficiently by recursively propagating the
evidence from the observed leaves to the root. Let O+(i) denote the portion
of evidence contained in the subtree rooted at vertex i, that is, the letters
observed on the leaves that are descendants of i. Then if i is a leaf of the tree,

P(O+(i)|χi = X, T ) =
{

1 if X is observed at i
0 otherwise

. (10.15)

A different distribution can be used when the letter associated with a leaf is
known only with some ambiguity. If i is any internal node,

P(O+(i)|χi = X, T ) =
∑
Y∈A

∑
j∈N+(i)

pYX(dji)P((O+(j)|χj = Y, T ). (10.16)

The evidence O can be propagated in this way all the way to the root r . The
complete likelihood is then easily shown to be

P(O|T) =
∑
X∈A

pr (X)P(O+(r)|χr = X, T ) =
∑
X∈A

pr (X)P(O|χr = X, T ). (10.17)

This algorithm, which again is a propagation algorithm for Bayesian networks,
is sometimes called the “peeling” or “pruning” algorithm. Note that the aver-
age composition for pr and the pkYX(dji) probabilities can be chosen differently
for each column position without changing the structure of the previous cal-
culations. Thus the evolutionary models on each site are similar but need not
be identical. It is also worth noting that, instead of integrating over all pos-
sible assignments of the internal nodes, one could compute an optimal (most
probable) assignment of letters for the internal node. This is the equivalent of
the Viterbi path computations we have seen for HMMs.

One useful observation is that if the evolutionary model is reversible and if
there are no external constraints on the position of the root (e.g., a requirement
that all the leaves be contemporaneous), then the likelihood is independent of
the position of the root. The process being the same forward or backward, the
root can be moved arbitrarily along any edge of the tree and therefore over the
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Figure 10.2: Tree Rooted at r with Possible Alternative Root s on the r -to-j Branch.

entire tree. More formally, consider a tree starting with a root r , two children
i and j, and an alternative root s on the branch from r to j (figure 10.2). From
(10.16) and (10.17), we have

P(O|T) =
∑

X,Y,Z∈A
pr (X)pYX(dir )P(O+(i)|χi = Y, T )pZX(dsr )P(O+(s)|χs = Z, T ).

(10.18)
Taking into account the reversibility and assuming the system at equilibrium:
p = pr = ps and pr(X)pZX(dsr ) = ps(Z)pXZ(drs). Now

∑
Y∈A

pYX(dir )P(O+(i)|χi = Y, T ) = P(O++(r)|χr = X, T ), (10.19)

where the ++ notation denotes evidence of a tree rooted at s rather than r .
Likewise,

P(O+(s)|χs = Z, T ) =
∑
W∈A

P(O++(j)|χj = W, T )pWZ(djs). (10.20)

Collecting terms, we finally have

P(O|T) =
∑
X∈A

ps(X)P(O++(s)|χs = X, T ). (10.21)

Thus we are free to position the root anywhere on the tree without altering the
likelihood, or we can speak of the likelihood of the equivalence class associated
with the unrooted tree.
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10.5 Optimal Trees and Learning

Little work has been done so far to define prior distributions on the space of
phylogenetic trees, in terms of both the branching process and the branching
lengths. We thus omit the topic of priors and proceed with the first Bayesian
inferential step: estimating ML trees. Section 10.4 computed the likelihood for
a given tree topology and branching length. For a given topology, the lengths
dji can be viewed as the parameters of the models and therefore can be opti-
mized by ML. As for HMMs, in general the ML estimate cannot be determined
analytically but can be approximated using, for example, gradient descent, EM,
or perhaps some form of Viterbi learning. We leave it as an exercise for the
reader to find EM or gradient-descent equations for the optimization of the
branch length [178].

10.5.1 Optimal Topologies

The optimization of the topology is a second problem that requires approxi-
mations. The number of possible trees, even unrooted, is exponentially large
and the space of topologies cannot be searched exhaustively. Heuristic algo-
rithms for navigating in this space toward good topologies are described in
the literature [178] and will not be reviewed here in detail. One widely used
heuristic algorithm consists of progressively adding species (i.e., observation
sequences) one by one, starting with a two-species tree. At each step, a new
species is selected and all its possible positions with respect to the current tree
are considered. The most likely is selected before proceeding to the next step.
One serious caveat with a search algorithm of this sort is that the final tree
topology depends on the order of presentation of the observation sequences.

In any case, it is clear that the ML approach to phylogenetic trees is rather
computationally intensive. A complete Bayesian treatment of phylogeny is
even more intensive since, in addition to priors, it requires integrating across
trees in order, for instance, to estimate the probability that a given substitution
has or has not occurred in the past. Parsimony methods can be viewed as fast
approximations to ML.

10.6 Parsimony

The basic idea behind parsimony is that the optimal tree is the one requir-
ing the smallest number of substitutions along its branches. In this sense, it
is somewhat related to MDL (minimum description length) ideas. More for-
mally, consider again an assignment (Xi) to the internal nodes of the tree,
the notation being extended to the leaves. The letters at the leaves are fixed
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and determined by the observations. Then the parsimony cost (error) of the
assignment is defined to be

EP((Xi)|T) =
∑
i∈I

∑
j∈N+(i)

δ(Xi,Xj). (10.22)

In other words, a fixed cost is introduced for any nonidentical substitution,
and the goal is to find an assignment and then a tree with minimal cost. For a
given tree, a minimal assignment is also called a minimum mutation fit.

To see the connection with ML methods, recall that for a given tree, the
probability of an assignment (Xi) is given by

P((Xi)|T) = pr (Xr )
∏
i∈I

∏
j∈N+(i)

pXjXi(dji), (10.23)

and the negative log-probability by

E((Xi)|T) = − logpr(Xr )−
∑
i∈I

∑
j∈N+(i)

logpXjXi (dji). (10.24)

If we let

pXjXi (dji) =
{
a if Xj = Xi
(1− a)/(|A| − 1) if Xj �= Xi

, (10.25)

with 1/|A| < a < 1, then it is easy to check that there exist two constants
α > 0 and β such that

E = αEP + β. (10.26)

In fact, α = log[a(|A| − 1)/(1 − a)] and β = −|E| loga + log |A|, where |E|
is the number of edges in the tree T . In other words, a minimum mutation
fit for a given tree is equivalent to a Viterbi (most likely) assignment in an ML
phylogeny model defined by (10.25) on the same tree topology. Thus parsi-
mony can be viewed as an approximation to an ML approach to phylogeny.
It implicitly assumes that changes are rare, uniform across the alphabet and
across time. Thus, if the amount of change is small over the evolutionary times
being considered, parsimony methods are statistically justified. Recursive al-
gorithms for parsimony are well known [181]. In weighted parsimony [464],
one can relax the assumption of uniform substitutions across the alphabet by
introducing different weights w(Y,X) for each type of substitution. Again, it is
easy to see that this can be viewed in a special ML context by letting, for any Y
in A,

pYX(dji) = e−αw(Y,X)∑
Z∈A e−αw(Z,X)

. (10.27)

Parsimony methods are computationally faster than ML methods, and prob-
ably this is one of the reasons for their wider use. Parsimony methods, how-
ever, can lead to wrong answers when evolution is rapid. Comparison tests
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between ML and parsimony can be conducted on artificial data generated by
a probabilistic evolutionary model. For small samples, obviously both ML and
parsimony methods can lead to the wrong phylogeny. In the case of large
samples, however, phylogenetic trees are usually correctly reconstructed by
ML, but not always by parsimony.

10.7 Extensions

In summary, we have reviewed the basic methodology for constructing phylo-
genies. The key point is that phylogenetic reconstruction is another applica-
tion of Bayesian inference methods. The first step required is the construction
of tractable probabilistic models of the evolutionary process. Markov substi-
tution models form such a class. We have shown that the main algorithms
for phylogenetic reconstruction currently in use, including parsimony meth-
ods, are special cases or approximations to ML inference within such a class.
Algorithms for phylogenetic reconstruction are computationally intensive, es-
pecially when exploration of a large number of possible trees is required.

HMMs and probabilistic tree models of evolution have some complemen-
tary strengths and weaknesses. HMMs are needed to produce multiple align-
ments that are the starting point of evolutionary reconstruction algorithms.
Evolutionary models are needed to regularize HMMs, that is to post-process
the raw counts of multiple alignment columns to produce emission probabil-
ities that are finely tuned for homology searches in large data bases. It is
clear that one direction of research is to try to combine them, that is, to com-
bine trees and alignments, phylogeny, and structure [247, 519], and come up
with probabilistic models of the evolutionary process that allow insertions and
deletions while remaining computationally tractable (see also tree-structured
HMMs in appendix C).

A single Markovian substitution process is a bad model of evolution for all
the reasons discussed in this chapter, and also because over large evolution-
ary times it produces a single equilibrium distribution. This is inconsistent
with what we observe and, for instance, with the use of a mixture of Dirichlet
distributions (Appendix D) as a prior for HMM emission probabilities. Past its
relaxation time, a simple Markov model cannot give rise to clusters of distri-
butions and to the different components of a Dirichlet mixture. To account for
possible clusters, we must use the simple model over relatively short transient
periods, or move to a higher class of evolutionary models.

What would a higher-level model of evolution look like? Imagine that we
could observe multiple alignments produced at different times in the course
of evolution, say every hundred million years. At each observation epoch,
the alignment columns would represent a sample from a complex distribution
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over possible columns. It is this distribution that evolves over time. Thus in
this class of higher-level models, evolution takes place on the distribution over
distributions. A simple example of a model in this class can be constructed
as follows. We can imagine that the original (t = 0) distribution on emission
distributions is a Dirichlet mixture P(P) = ∑

i λiDαiQi(P) and that we have
a simple Markovian substitution process operating on the Qs ( and possibly
additional processes operating on the αs and λs). At time t, the distribution
becomes P(P) = ∑i λtiDαtiQ

t
i
(P). For instance, with a PAM matrix substitution

model, ifQi is chosen equal to the binary unit vector with a single 1 in position
i (representing the letter X), then Qti at time t is associated with the ith column
of the corresponding PAM matrix (representing p.X(t)). Such a model is con-
sistent with regularizing HMM emissions using Dirichlet mixtures associated
with PAM matrix columns [497].



Chapter 11

Stochastic Grammars and
Linguistics

11.1 Introduction to Formal Grammars

In this chapter we explore one final class of probabilistic models for sequences,
stochastic grammars. The basic idea behind stochastic grammars is a direct
extension of the simple dice model of chapter 3 and of HMMs.

As briefly mentioned in chapter 1, formal grammars were originally devel-
oped to model natural languages, around the same time that the double-helical
structure of DNA was elucidated by Watson and Crick. Since then, grammars
have been used extensively in the analysis and design of computer languages
and compilers [3]. Grammars are natural tools for modeling strings of letters
and, more recently, they have been applied to biological sequences. In fact,
many problems in computational molecular biology can be cast in terms of
formal languages [91, 479]. Here, language!formalthe basic goal again is to
produce, by machine learning, the corresponding grammars from the data.

Next, we review the rudiments of the theory of formal grammars, includ-
ing different classes of grammars, their properties, the Chomsky hierarchy,
and the connection to HMMs. In section 11.3, we demonstrate how stochastic
grammars can be applied to biological sequences, and especially the appli-
cation of context-free grammars to RNA molecules. In the subsequent three
sections we consider priors, likelihoods, and learning algorithms. Finally, in
the last two sections we cover the main applications.

277
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11.2 Formal Grammars and the Chomsky Hierarchy

11.2.1 Formal Languages

We begin with an alphabet A of letters. The set of all finite strings over A is
denoted by A∗. ∅ denotes the empty string. A language is a subset of A∗. In
this trivial sense, we can say that promoters or acceptor sites in intervening
sequences form a language over the DNA alphabet. Such a definition by itself
is not very useful unless we define simple ways of generating, recognizing,
and classifying languages. A grammar can be seen as a compact set of rules
for generating a language. language!formal

11.2.2 Formal Grammars

A formal grammar is a set of rules for producing all the strings that are syn-
tactically correct, and only those strings. A formal grammar G consists of
an alphabet A of letters, called the terminal symbols; a second alphabet V of
variables, also called nonterminal symbols; and a set R of production rules.
Among the nonterminal symbols, there is a special s = start variable. Each
production rule in R consists of a pair (α,β), more commonly denoted α → β,
where α and β are elements of (A ∪ V)∗. The arrow in α → β can be read
as “produces” or “expands into.” We use Greek letters to denote strings that
could be combinations of nonterminal and terminal symbols. Thus, in the
most general case, α and β are strings made up of letters and variables. In
addition, we will assume that α contains at least one nonterminal symbol.
Given G and two strings γ and δ over (A ∪ V), we say that δ can be de-
rived from γ if there is a finite sequence of strings π = α1, . . . , αn such that
γ → α1 → . . . → αn → δ (also denoted γ →π δ), each step corresponding to an
application of a production rule in R. The language L = L(G) generated by the
grammar G is the set of all terminal strings that can be derived from the start
state s.

As an example, let us consider the grammar defined by A = {X,Y}, V = {s},
and R = {s → XsX, s → YsY, s → X, s → Y, s → ∅}. The string XYYX can be de-
rived from the string s: s → XsX → XYsYX → XYYX, by applying the first, second,
and fourth production rules in succession. More generally, it is easy to show
that G generates the set of all palindromes over A. Palindromes are strings
that can be read identically in the forward and backward directions. We can
now define several different types of grammars and the Chomsky hierarchy.
The Chomsky hierarchy is a classification of grammars by increasing degrees
of complexity and expressive power.
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11.2.3 The Chomsky Hierarchy

The Chomsky hierarchy and its properties are summarized in table 11.1.

Regular Grammars

One of the simplest classes of grammars is the regular grammars (RGs). In a
regular grammar, the left-hand side of a production rule is a single variable,
and the right-hand side is typically a single letter of the alphabet followed by
at most a single variable. Thus strings can grow in only one direction. More
precisely, a grammar G is regular (or right-linear) if all the production rules
are of the form u → Xv, or u → X, or u → ∅, where u and v are single
nonterminal symbols. A language is regular if it can be generated by a regular
grammar. language!regularRegular languages can also be described by other
means—for instance, in terms of regular expressions. Regular languages can
be recognized very efficiently, although their expressive power is limited.

Context-free Grammars

Regular grammars are special cases of context-free grammars (CFGs), that is,
grammars where the replacement of a variable by an expression does not de-
pend on the context surrounding the variable being replaced. More precisely, a
grammar G is context-free if all the production rules in R are of the form u→ β,
where u is a single nonterminal symbol. A language is language!context-
freecontext-free if it can be generated by a context-free grammar. Context
free-grammars can be expressed in canonical forms, also called normal forms,
such as the “Chomsky normal form” or the “Greibach normal form.” A context-
free grammar is said to be in Chomsky normal form if each production rule
has one of the following three forms: (1) s → ∅; (2) u → vw, where u, v, and
w are nonterminal symbols; (3) u → X. In addition, if s → ∅ is in R, then v
and w in (2) must be different from s.

The palindrome grammar above is context-free but not regular. Context-
free grammars are often used to specify the syntax of computer languages
and to build compilers. As can be expected, not all languages are context-free.
For example, copy languages are not context-free. A copy language consists
of all the strings where the second half is a copy of the first half. XXYXXY
belongs to a copy language (corresponding to direct repeats in DNA). Although
copy languages may appear similar to palindromes, they really require a more
complex class of grammars. Context-free grammars have also been used to
model natural languages, but with limited success because natural languages
are not context-free.
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Regular Context-free Context-sensitive Recursively enumerable
Production u→ Xv u → vw αXγ → αβγ All
rules u→ X u → X
Closure ∪, ., � ∪, ., � ∪, ., � All
properties ∩,¯ no ∩, no¯
Automata Finite-state Pushdown Bounded tape Turing machine
equivalence automata automata Turing machine
Characteristic Palindromes Copy language All
language
Characteristic No long-range Nested Crossing All
dependencies

Table 11.1: The Zoo of Grammars and Their Associated Production Rules and Equivalence Rela-
tions.

Context-sensitive Grammars

Within the grammars that are not context-free, we can define the subclass
of context-sensitive grammars (CSGs). A grammar G is context-sensitive if all
the production rules are of the form αXγ → αβγ for X in A, β �= ∅. (X can
be replaced by β in the context α − γ .) In addition, the single rule s → ∅
is allowed, provided s does not appear on the right-hand side of any other
production rule. A language is context-sensitive if it can be generated by a
context-sensitive grammar. It can be shown that copy languages are context-
sensitive but not context-free. Context-sensitive languages are characterized
by grammars in which the right-hand side of the production rules is at least as
long as the left-hand side.

Recursively Enumerable Grammars

These are the most general grammars, without any of the restrictions above.
Recursively enumerable refers to the fact that if a word is in the corresponding
language, its derivation can always be obtained on a Turing machine in finite
time, simply by listing all possible (countable) derivations. Recursively enu-
merable is weaker than recursive: in general membership of a word in a lan-
guage cannot be established in finite time, as in the classical halting problem.
The term “Chomsky hierarchy” refers to the theorem that the main classes of
grammars we have seen so far form a strictly increasing sequence. That is,

RGs ⊂ CFGs ⊂ CSGs ⊂ REGs, (11.1)

where all the inclusions are strict and RGs = regular grammars, CFGs = context-
free grammars, CSGs = context-sensitive grammars and REGs = recursively
enumerable grammars. Going up the Chomsky hierarchy allows one to have
more general rules, but also more restrictions on the language by excluding
more strings.



Formal Grammars and the Chomsky Hierarchy 281

11.2.4 Ambiguity and Parsing

A derivation can be arranged in a tree structure, called a parse tree, that re-
flects the syntactic structure of a sequence. Parsing can be done top down
or bottom up. A sequence is ambiguous if it admits more than one parse
tree. The notion of ambiguity is important for compilers. Ambiguity intro-
duces complexity in parsing, both in the parsing algorithm and because the
number of parse trees may grow exponentially with the length of the string
being parsed. There are algorithms and complexity results for parsing spe-
cific grammars. A grammar is said to be linear if the right-hand sides of all
the production rules contain at most one nonterminal symbol. Fast parsing
algorithms exist for linear context-free grammars. In general, language recog-
nition and sequence parsing become more computationally demanding as one
ascends the Chomsky hierarchy.

11.2.5 Closure Properties

Each of the grammar classes in the Chomsky hierarchy is closed or stable un-
der a number of language operations, such as union (L1 ∪ L2), concatenation
(L1.L2), and iteration (L∗1 ). Regular languages are also closed under comple-
ment (L̄1) and intersection (L1 ∩ L2). Context-free languages are not closed
under complement or intersection.

11.2.6 Dependencies

Two additional ways of looking at grammars are in terms of the patterns they
can generate and in terms of automata. Regular grammars can generate over-
all patterns, such as alternating strings like XYXYXYXY. Like HMMs, regular
grammars cannot handle long-range dependencies in a string. Context-free
grammars can model certain simple long-range dependencies, that is, nested
dependencies. A pattern of dependencies is nested if it can be drawn without
having two lines cross each other. Nested dependencies are characteristic of
context-free languages such as palindromes, where the first letter must match
the last one, the second must match the second to last, and so on. When depen-
dencies cross, as in a copy language, a context-sensitive language is necessary
because crossing dependencies can be implemented only with the freedom of
movement that nonterminals enjoy during context-sensitive derivation.

11.2.7 Automata

A final way of understanding the Chomsky hierarchy is to look at the automata
associated with each language. Without going into details, regular languages
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correspond to finite state automata (FSA), with typically one state per nonter-
minal symbol in the grammar, as in HMMs. In such automata, there is no stor-
age facility apart from the states themselves: everything must be hardwired.
Context-free languages correspond to pushdown automata (PDA), which are
like finite-state automata but with a memory stack. Only the top of the stack
is accessible at any one time. This one-place memory holder is used for palin-
dromes by pushing in, and popping off, one symbol at a time. Such automata
cannot handle crossing dependencies because they can access only the top
of the stack at any one time. Context-sensitive languages are associated with
Turing machines with a linearly bounded tape, that is, with tape length pro-
portional to the I/O strings. Left and right movements along the tape are
needed for copying and for handling crossing dependencies. Finally, general
languages, that is recursively enumerable languages, correspond to Turing ma-
chines (TMs) with unbounded tape, that is, the standard model of universal
computers.

11.2.8 Stochastic Grammars and HMMs

So far we have considered deterministic grammars. Stochastic grammars are
obtained by superimposing a probability structure on the production rules.
Specifically, each production rule α → β is assigned a probability P(α → β), so
that

∑
β P(α → β) = 1. A stochastic grammar is therefore characterized by a

set of parameters w and can be viewed as a probabilistic generative model for
the corresponding language (i.e., the language associated with the underlying
deterministic grammar).

By now, it should be clear to the reader that HMMs can be viewed exactly
as stochastic regular grammars (SRGs). To see this, it suffices to replace the
transition from a state sj to a state si in an HMM, together with the emission
of the alphabet letter X, with the SRG production rule sj → Xsi with associated
probability tijeiX. Stochastic context-free grammars (SCFGs) then form a more
general class of models. They are used in the following sections to model the
structure of RNA sequences, and can also be viewed as further generalizations
of the dice models of chapter 3. SCFGs include a type of die that has two
letters on each face. In the simplest RNA models, the two letters reflect base
complementarity. Thus some of the RNA dice have four faces, just like a sim-
ple DNA die, but the letters on the faces are AU, UA, CG, and GC (excluding GU,
UG pairs) (see figure 11.1).
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Figure 11.1: Illustration of the Complementarity in the Watson–Crick Base Paring in DNA. In
RNA uracil (U) replaces thymine (T).

11.2.9 Graph Grammars

So far we have considered grammars over alphabets of letters. It is possible,
however, to consider more general alphabets where the “letters” are graphs
or pixel configurations in image processing. In the case of graph grammars
(see [165, 158] and other papers in the same volume), one must carefully spec-
ify how graphs are to be joined to each other during the derivation process.
Graph grammars have considerable expressive power, and could be a natural
candidate for modeling secondary and tertiary structures of biological macro-
molecules. Little work, however, has been done in this direction so far; a
key problem is the lack of efficient learning algorithms for general (or even
restricted) graph grammars.
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11.3 Applications of Grammars to Biological Sequences

Ultimately, one would like to derive grammar models all the way up to the
scale of genes, chromosomes, and even genomes. After all, genomes represent
only a very small fraction of all the possible DNA sequences of comparable
length. But to begin with, one must consider simpler examples, associated
with smaller grammars, such as RNA secondary structure and palindromes.

11.3.1 RNA Secondary Structure and Biological Palindromes

RNA Secondary Structure

Many components in biological macromolecules consist of RNA. Important
RNA families include transfer RNA (tRNA), ribosomal RNA (rRNA), small nu-
clear RNA in the spliceosome (snRNA), messenger RNA (mRNA), and various
classes of introns. New phylogenies of small RNA molecules can also be se-
lected in vitro for particular functions, such as protein binding or catalysis
[109, 356, 469, 55].

Although RNA normally is single-stranded, helices formed by complemen-
tary base pairing strongly control how the RNA folds to form a distinctive 3D
structure. The folding of an RNA chain into a functional molecule is largely
determined by the Watson–Crick pairs A–U and G–C, but also to some extent
by G–U and, more rarely, G–A pairs. RNA nucleotides interact to form sec-
ondary structure motifs such as stems, loops, bulges, and pseudoknots where
otherwise unpaired nucleotides far from each other in the sequence interact
[573]. These pairings often have a nested structure and cannot be modeled
efficiently using a regular language or HMMs. We first consider the case of
biological palindromes in RNA and other molecules.

Biological Palindromes

There are many examples of RNA/DNA palindromes associated, for example,
with protein binding sites. Biological palindromes are slightly different from
the ones described above because the letters are not identical when they are
matched pairwise, starting from both ends, but complementary. For example,
AGAUUUCGAAAUCU is an RNA palindrome. In DNA such palindromes are called
inverted repeats.

Because of the complementary double-helix structure of DNA, each half
of the palindrome on one side of the helix has a mirror image on the other
strand. Thus, if a palindrome string is read from left to right on one strand,
the same string can be read from right to left on the opposite strand. RNA
palindromes can have arbitrary lengths, and therefore it is likely that they
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need to be modeled by context-free or more complex grammars (technically,
palindromes with a fixed upper length can be modeled by a regular grammar).
RNA palindromes are typically folded so that they create hairpin (stem-loop)
structures.

A grammar for RNA palindromes is given by

s → AsU | UsA | CsG | GsC | ∅, (11.2)

where we have listed all the alternative production rules in one line separated
by a “|”. A palindrome can be generated by: s → AsU → AGsCU → AGUsACU,
etc. The parse tree produced can be drawn to reflect the base pairing (see
also figure 11.2). Real RNA palindromes are not as perfect, but an occasional
mismatched pair does not destroy the secondary structure. Some alternative
pairings, such as UG, are more tolerated than others; hence also the need to
introduce probabilities. It is also common for the stem of a hairpin to have
bulges of unpaired bases. RNA is usually not flexible enough to make a 180◦
turn at the tip of the hairpin. There is often a loop of at least three to four
unpaired bases, and sometimes the loop is much longer. Likewise, in DNA
palindromes the two halves of the relevant palindrome can be separated by
significant distances. All such features can be incorporated into a grammar
but complicate the rules.

The previous grammar can generate strings corresponding to single palin-
dromes. Both DNA and RNA are rich in compound palindromes, that is, se-
quential and recursive ones. Sequential palindromes occur when two or more
palindromes follow each other side by side. Recursive palindromes occur when
one palindrome is nested within another. The secondary RNA structure associ-
ated with a recursive palindrome is a stem with another stem budding from its
side. Obtaining simple recursive palindromes is surprisingly easy: one needs
only to add the production rule of the form s → ss. Duplicating the vari-
able s allows for the start of a new palindrome anywhere within an existing
one. The corresponding grammar generates structures of branched stems,
known as orthodox secondary structures. The best-known example is perhaps
the cloverleaf structure of transfer RNA. There are many other examples, es-
pecially in ribosomal RNA, of structures consisting of combinations of loops
and nested stems. The grammar of recursive palindromes is context-free but,
unlike the grammar of simple palindromes, it is ambiguous. The double in-
verted repeat UGAUCA–UGAUCA can be parsed as a single hairpin, but also as
two or more side-by-side stems, not necessarily of equal length. The alter-
native parse tree corresponds to alternative secondary structures. There are
known cases where structural ambiguity seems to be used to confer different
roles on the same RNA element. Other examples of ambiguity in DNA linguis-
tics include overlapping genes—in HIV viruses, where some segments of the
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genome can encode more than one gene, using ambiguous starting points and
reading frames.

11.3.2 Context-free Grammars for RNA

More generally, the types of rules needed for an SCFG for RNA are the follow-
ing:

1. Pair emission rules, for Watson–Crick pairs

u→ AvU | UvA | CvG | GvC, (11.3)

but also for rarer pairs (in order of rarity)

u→ GvU | GvA. (11.4)

2. Single-letter left emissions (unpaired bases)

u→ Av | Cv | Gv | Uv. (11.5)

3. Single-letter right emissions (unpaired bases)

u→ vA | vC | vG | vU. (11.6)

4. Single-letter emissions (unpaired bases)

u→ A | C | G | U. (11.7)

5. Branching (or bifurcation)
u→ vw. (11.8)

6. Deletions (or skips)
u→ v. (11.9)

The nonterminal variables on the left-hand side of the production rules, such
as u, play the role of HMM states and must be numbered u1, u2, . . .. As
with HMMs, these nonterminal variables can be partitioned into three classes:
match, insert, and delete or skip, each with different distributions. Match cor-
responds to important columns in RNA multiple alignments. The main differ-
ence from HMMs is the possibility for some states to emit two paired symbols.
For a nonterminal u associated with an insert state, a production rule of the
form u → Xu allows multiple insertions. These are needed in loop regions to
adjust the loop length. An example of CFG RNA grammar adapted from [460]
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a. Productions b. Derivation

P = { s → u1, u7 → G u8,
u1 → C u2 G, u8 → G,
u1 → A u2 U, u8 → U,
u2 → A u3 U, u9 → A u10 U,
u3 → u4 u9, u10→ C u10 G,
u4 → U u5 A, u10→ G u11 C,
u5 → C u6 G, u11→ A u12 U,
u6 → A u7, u12→ U u13,
u7 → U u7, u13→ C }

s ⇒ u1 ⇒ Cu2G ⇒ CAu3UG ⇒ CAu4u9UG
⇒ CAUu5Au9UG ⇒ CAUCu6GAu9UG
⇒ CAUCAu7GAu9UG ⇒ CAUCAGu8GAu9UG
⇒ CAUCAGGGAu9UG
⇒ CAUCAGGGAAu10UUG
⇒ CAUCAGGGAAGu11CUUG
⇒ CAUCAGGGAAGAu12UCUUG
⇒ CAUCAGGGAAGAUu13UCUUG
⇒ CAUCAGGGAAGAUCUCUUG

c. Parse tree d. Secondary Structure
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Figure 11.2: The Simple Context-free Grammar and the Derivation of the Particular Sequence
CAUCAGGGAAGAUCUCUUG. A. Set of production rules of the grammar, where s is the start symbol
and u1 to u13 are nonterminals. B. Derivation. C. Parse tree associated with the derivation. D.
Secondary structure reflecting the parse tree. Adapted from [460].

is given in figure 11.2, with the derivation of a sequence, its parse tree, and
secondary structure.

The list of rule types given above is of course redundant, and not all com-
binations of rule types and nonterminal classes are needed to model RNA.
In spite of their different name, the RNA covariance models of [156] are es-
sentially equivalent to the SCFG models. The models in [156] use only the
following:

• Match states with pair, single left, and single right emissions

• Insert states with single left and single right emissions

• Delete and branching states.

There are of course trade-offs among the richness of a grammar, the time it
takes to train it, and whether it underfits or overfits the data.

11.3.3 Beyond Context-free Grammars

So far we have remained in the realm of context-free grammars, pushdown
automata, and nested dependencies. Many of the simple evolutionary oper-
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ations, such as insertions, deletions, and substitutions, can be expressed in
isolation by context-free production rules. There are, however, other genetic
operations on blocks of nucleic acid strings—such as duplications, inversions,
translocations, and transpositions—that lead to the crossing of dependencies
and therefore cannot be accounted for properly in a context-free style. Direct
repeats in DNA are fairly common, and essentially form a copy language. As
such, they can be modeled by context-sensitive grammars. Crossing of de-
pendencies is also seen in the secondary and tertiary structures of biological
molecules. One example here is the pseudoknots occurring in RNA structures.

As already mentioned, pseudoknots occur when a single-stranded loop re-
gion forms Watson–Crick base pairs with a complementary sequence outside
the loop. Pseudoknots can be viewed as palindromes that are interleaved
rather than nested. For instance, AACCGGUU can be regarded as the nest-
ing of two palindromes: AAUU and CCGG. On the other hand, AACCUUGG is a
pseudoknot because the complementary pairings must cross each other. Fea-
tures such as pseudoknots are referred to as non-orthodox secondary struc-
tures. The previous context-free grammars are not sufficient to model pseu-
doknots. Pseudoknots, like direct repeats, can be described using context-
sensitive grammars. Finally, it must be noted that the language of DNA may
be viewed as the superposition or intersection of several other languages—for
instance, for transcription, splicing, and translation. Even if each individual
language were context-free, we have seen that there is no reason for the inter-
section to be context-free.

11.4 Prior Information and Initialization

11.4.1 Learning the Grammar Rules and Initialization from Multiple
Alignments

All the rules in an SCFG, as well as their probabilities, can easily be derived
from a multiple alignment when one is available, as in the case of HMMs, and
with the same caveats. In [156], an algorithm is reported by which the produc-
tion rules themselves are derived from a set of unaligned sequences. For large
RNA molecules, the process of constructing the grammar can also be hierar-
chically decomposed, whereby a high-level grammar (called metagrammar in
[460]) is first constructed on the basis of secondary-structure large-scale mo-
tifs [502], such as helices and loops. Each motif is then separately represented
by a set of SCFG rules.
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3’ 3’ 3’ 3’
A C G U

5’ A 0.160097 0.135167 0.192695 1.590683
5’ C 0.176532 0.134879 3.403940 0.162931
5’ G 0.219045 1.718997 0.246768 0.533199
5’ U 2.615720 0.152039 0.249152 0.249152

Table 11.2: Helix Pseudocounts Are Added to Actual Observed Frequencies to Reflect Prior
Information. The 16 parameters in the Dirichlet prior were computed from distributions of
basepaired positions in a large alignment of 16S rRNA sequences [346]. From the alignment a
four-parameter Dirichlet prior for nucleotide distributions in loop regions was made as well: A
(0.26); C (0.21); G (0.18); U (0.20).

11.4.2 Dirichlet Priors

Dirichlet priors are the natural choice for the production rules of stochastic
grammars. In the list in section 11.3.2, there are two main different types of
rules that need to be considered: the pair emission rules u → XvY and the
singlet emission rules of the form u → Xv for loop regions. In the case of
RNA, there are 16 (resp. 4) possible versions of the first (resp. second) type
of rule. Because of Watson–Crick base pairing, the corresponding Dirichlet
vectors are not uniform. They can easily be derived from a database of aligned
RNA structures, such as [346] (table 11.2).

The other rules, such as branch production, can also be Dirichlet-
regularized if necessary.

11.5 Likelihood

First, consider the problem of computing the likelihood P(O|w) of a sequence
O = X1 . . .Xt . . .XT according to a grammar M = M(w) with parameter w.
Recalling that SCFGs are ambiguous, let π = α1, . . . , αn be a derivation of O
from the start state s. Then

P(s →π O|w) = P(s → α1|w)P(α1 → α2|w) . . .P(αn → O|w), (11.10)

P(O|w) =
∑
π

P(s →π O|w). (11.11)

These expressions are of course very similar to the ones obtained in the case
of HMMs, where HMM paths are replaced by grammar derivations. Again, this
expression for the likelihood is not directly practical because the number of
possible parse trees is exponential in the length of the sequence. Again, this
problem can be circumvented by using dynamic programming. In the case of
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nonstochastic context-free grammars in Chomsky normal form, this algorithm
is known as the Cocke–Kasami–Younger algorithm [393]. The derivation of a
slightly more general version for stochastic context-free grammars is similar
to the forward propagation algorithm for HMMs, and is left as an exercise
(it is also called the “inside” algorithm). The most probable parse tree of a
sequence according to an SCFG can be found by a similar version of dynamic
programming that generalizes the Viterbi algorithm of HMMs. By analogy,
we will use the term Viterbi parse tree or Viterbi derivation. One important
point to consider is that the additional complexity of SCFGs with respect to
HMMs results in three-dimensional forms of dynamic programming that scale
as O(N3) rather than O(N2) (see [460, 156] for additional details).

11.6 Learning Algorithms

Learning algorithms for SCFGs of one sort or the other are described in [25,
345, 459, 460, 156]. As in the case of HMMs, the basic idea at the first level
of Bayesian inference is to estimate model parameters by maximizing the like-
lihood or the posterior through some iterative algorithm. In most of the ex-
amples cited above, this is done by some form of the EM algorithm, although
one could also use other methods, such as gradient descent. The derivation
of each learning rule is only sketched because it closely parallels what has
been described in detail in the case of HMMs. For the sake of simplicity, we
begin with ML estimation with a single training sequence O and an SCFG with
known rules and parameters w. Extensions to MAP estimation and/or mul-
tiple training sequences are straightforward. Let us consider a generic pro-
duction rule of the form u → β. For any derivation π of O, we can define
n(β,u,π,O) to be the number of times the rule u→ β is used in π . Similarly,
let n(u,π,O) = ∑β n(β,u,π,O).

11.6.1 The EM Algorithm

For the E step of the algorithm, we let Q(π) = P(π|O,w). If Pu→β denotes
the probability parameter associated with the rule, then the EM reestimation
equations are given by

P+u→β =
∑
π Q(π)n(β,u,π,O)∑
π Q(π)n(u,π,O)

=
∑
π P(π|O,w)n(β,u,π,O)∑
π P(π|O,w)n(u,π,O) = nu→β

nu
.

(11.12)
This reestimation formula is simple: all the complexity is hidden in the cal-
culation of the numerator and the denominator. These can be calculated by a
dynamic programming procedure similar to the one discussed in section 11.5,



Learning Algorithms 291

[ ] < D-domain > < Anticodon >< Extra >< T-domain >[ ]
((((((( (((( )))) ((((( === ))))) ((((( ))))))))))))

1 DC0380 -GCCAAGGTGGCAGAGTTCGGCCTAACGCGGCGGCCTGCAGAGCCGCTC----ATCGCCGGTTCAAATCCGGCCCTTGGCT---
2 DA6281 -GGGCGTGTGGCGTAGTC-GGT--AGCGCGCTCCCTTAGCATGGGAGAG----GTCTCCGGTTCGATTCCGGACTCGTCCA---
3 DE2180 --GCCCCATCGTCTAGA--GGCCTAGGACACCTCCCTTTCACGGAGGCG----A-CGGGGATTCGAATTCCCCTGGGGGTA---
4 DC2440 -GGCGGCATAGCCAAGC--GGT--AAGGCCGTGGATTGCAAATCCTCTA----TTCCCCAGTTCAAATCTGGGTGCCGCCT---
5 DK1141 -GTCTGATTAGCGCAACT-GGC--AGAGCAACTGACTCTTAATCAGTGG----GTTGTGGGTTCGATTCCCACATCAGGCACCA
6 DA0260 -GGGCGAATAGTGTCAGC-GGG--AGCACACCAGACTTGCAATCTGGTA----G-GGAGGGTTCGAGTCCCTCTTTGTCCACCA
7 DA3880 -GGGGCTATAGTTTAACT-GGT--AAAACGGCGATTTTGCATATCGTTA----T-TTCAGGATCGAGTCCTGATAACTCCA---
8 DH4640 -AGCTTTGTAGTTTATGTG-----AAAATGCTTGTTTGTGATATGAGTGAAAT--------------------TGGAGCTT---

((((((( (((( )))) ((((( === ))))) ((((( ))))))))))))
1 DC0380 -GCCAAGGUGGCAG.AGUUcGGccUAACGCGGCGGCCUGCAGAGCCGCUC---AUCGCCGGUUCAAAUCCGGCCCUUGGCU---
2 DA6281 -GGGCGUGUGGCGU.AGUC.GG..UAGCGCGCUCCCUUAGCAUGGGAGAGG---UCUCCGGUUCGAUUCCGGACUCGUCCA---
3 DE2180 -GCCCC-AUCGUCU.AGAG.GCc.UAGGACACCUCCCUUUCACGGAGGCG----ACGGGGAUUCGAAUUCCCCU-GGGGGU--A
4 DC2440 -GGCGGCAUAGCCA.AGC-.GG..UAAGGCCGUGGAUUGCAAAUCCUCUA---UUCCCCAGUUCAAAUCUGGGUGCCGCCU---
5 DK1141 -GUCUGAUUAGCGC.AACU.GG..CAGAGCAACUGACUCUUAAUCAGUGGG---UUGUGGGUUCGAUUCCCACAUCAGGCACCA
6 DA0260 -GGGCGAAUAGUGUcAGCG.GG..-AGCACACCAGACUUGCAAUCUGGUA----GGGAGGGUUCGAGUCCCUCUUUGUCCACCA
7 DA3880 -GGGGCUAUAGUUU.AACU.GG..UAAAACGGCGAUUUUGCAUAUCGUUA----UUUCAGGAUCGAGUCCUGAUAACUCCA---
8 DH4640 -AGCUUUGUAGUUU.A--U.GU..GAAAAUGCUUGUUUGUGAUAUGAGUGA--AAU-----------------UGGAGCU

Figure 11.3: Comparison of Multiple Alignments of Several Representative tRNAs in the Data Set
(top) [502] with That Produced by the Trained Grammar RandomTRNA618 (bottom). Parenthe-
ses indicate base paired positions; = = =, the anticodon; ‘[]’, the 5’ and 3’ sides of the acceptor
helix. For RandomTRNA618, capital letters correspond to nucleotides aligned to the match
nonterminals of the grammar; lowercase letters to insertions; -, to deletions by skip produc-
tions; and ., to fill characters required for insertions. The sequences are taken from the seven
groups above and are denoted by their database section codes: 1. ARCHAE (Halobacterium
cutirubrum), 2. CY (Saccharomyces cerevisiae), 3. CYANELCHLORO (Cyanophora paradoxa), 4.
CYANELCHLORO (Chlamydomonas reinhardtii), 5. EUBACT (Mycoplasma capricolum), 6. VIRUS
(Phage T5), 7. MT (Aspergillus nidulans), 8. PART III (Ascaris suum).

and to the forward–backward algorithm of HMMs, which scales as O(N3) in-
stead of O(N2) for HMMs, where N is the average sequence length. When the
grammar is in Chomsky normal form, this is known also as the inside–outside
algorithm [345]. In the case of K training sequences O1, . . . ,OK , the EM reesti-
mation formula becomes

P+u→β =
∑K
j=1

∑
π P(π|Oj,w)n(β,u,π,Oj)∑K

j=1
∑
π P(π|Oj,w)n(u,π,Oj)

. (11.13)

A version of the EM algorithm for SCFGs, called tree-grammar EM, is devel-
oped in [460]. It has the advantage of scaling as O(N2), but requires folded
RNA as training samples. The folding structure provides more information
than the raw sequence but less information than a complete parse. If a com-
plete parse is available, one could just count the number of occurrences of
each production rule. The folding structure, on the other hand, provides a
skeleton tree where the leaves are labeled with the letters of the sequence,
but not the interior nodes. From the skeleton one can tell which nucleotides
are base paired, but one cannot directly tell whether a letter was emitted by
a match or insert nonterminal symbol. The tree-grammar EM estimates the
probabilities associated with the nonterminal symbols.

It is also possible to consider a global iterative training algorithm, as in
[460], where at each step (1) the current grammar is used to fold the train-
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Data set Type of tRNA Total Zero MT10CY10 MT100 Random
ARCHAE archaea 103 0 0 0 50
CY cytoplasm 230 0 10 0 100
CYANELCHLORO cyanelle and chloroplast 184 0 0 0 100
EUBACT eubacteria 201 0 0 0 100
VIRUS viruses 24 0 0 0 10
MT mitochondria 422 0 10 100 200
PART III part III 58 0 0 0 58
Total 1222 0 20 100 618

Table 11.3: Validation Results for SCFG RNA Models of tRNA Families.

ing sequences, then (2) the folded sequences are used to optimize the gram-
mar parameters—for instance, using tree-grammar EM. Production rules can
be added or removed from the grammar, as in the algorithms for adjusting
the length of a standard HMM architecture.

11.6.2 Gradient Descent and Viterbi Learning

While to the best of our knowledge only the EM algorithm has been used in
the SCFG literature, it is clear that one could use other learning algorithms,
such as gradient descent and Viterbi learning (simulated annealing remains
too expensive for complex SCFGs).

As with HMMs, we can reparameterize a SCFG by

Pu→β = ewu→β∑
γ ewu→γ

. (11.14)

The online gradient-descent learning equation is then

∆wu→β = η(nu→β −nuPu→β), (11.15)

where η is the learning rate. In the case of Viterbi learning for SCFGs, all
counts of the form n(β,u,π,O), which are averaged over all derivations π , are
replaced by the counts n(β,u,π∗,O) associated with the most likely deriva-
tion only. Most of the other remarks on gradient descent and Viterbi learning
made in the case of HMMs apply to SCFGs, with the proper modifications.
Viterbi learning from folded sequences is essentially equivalent to initializing
an SCFG from a preexisting multiple alignment.

11.7 Applications of SCFGs

A trained SCFG can be used in much the same way as we used HMMs in chap-
ters 7 and 8. For each example sequence, we can compute its Viterbi parse
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Data set ZeroTrain MT10CY10 MT100 RandomTRNA618
ARCHAE 94.87 100.00 100.00 100.00
CY 98.28 99.76 99.89 99.87
CYANELCHLORO 96.22 99.64 99.64 99.79
EUBACT 99.69 99.86 99.86 99.86
VIRUS 96.83 100.00 100.00 100.00
MT 89.19 98.33 98.91 98.93
PART III 55.98 81.10 83.21 83.00

Table 11.4: Percentages of Base Pairs in the Original Alignment That Are Also Present in the
Secondary Structure Predicted by Each of the Four Grammars.

tree. For RNA sequences, the syntactic structure or the equivalent parse tree
provide a candidate for optimal folding that can be used to predict secondary
structure. This approach complements previous methods for RNA secondary
structure prediction based on phylogenetic analysis or thermodynamic con-
siderations. The parse trees can also be used to derive multiple alignments
where aligned columns or pairs of columns are associated with nonterminal
main states. Gaps must be added in the obvious way. This is useful to deter-
mine common consensus patterns. Negative log-likelihood (or log-posterior)
scores can be computed for any sequence. As in the case of HMMs, the score
of a sequence depends on its length and must be normalized, as discussed in
chapter 8. These scores in turn can be used to discriminate members of the
family from non-members, to search databases, and possibly to discover new
members of the family. In generative mode, SCFG could be used to generate
new putative members of a given family, although this has not been tested. Fi-
nally, SCFGs can also be combined in modular ways. An example is discussed
in [156] in which a tRNA SCFG grammar is combined with an intron grammar
to search for tRNA genes.

11.8 Experiments

Here we report the validation results in [460] for SCFG RNA models of tRNA
families. Similar results are described in [156]. The original data set consists
of the sequences and alignments of 1222 unique tRNAs extracted from the
database described in [502]. The length varies between 51 and 93 bases, and
the sequences are subdivided into seven disjoint sets corresponding to differ-
ent tRNA types (table 11.3).

For discrimination experiments, 2016 non-tRNA test sequences are gener-
ated from the non-tRNA features (including mRNA, rRNA, and protein coding
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Above 5 σ Between 4 and 5 σ Below 4 σ
Data Set ZT MT10 MT100 R618 ZT MT10 MT100 R618 ZT MT10 MT100 R618
ARCHAE 66 103 103 103 19 0 0 0 18 0 0 0
CY 135 230 230 230 53 0 0 0 42 0 0 0
CYANELCH 61 184 184 184 52 0 0 0 71 0 0 0
EUBACT 160 201 201 201 30 0 0 0 11 0 0 0
VIRUS 16 24 24 24 4 0 0 0 4 0 0 0
MT (train) N/A 10 99 193 N/A 0 1 6 N/A 0 0 1
MT (test) 64 389 313 218 89 10 7 3 269 13 2 1
PART III 0 9 7 29 1 15 14 8 57 34 37 21
NON-TRNA 0 0 0 0 0 0 1 1 2016 2016 2015 2015
Totals 502 1150 1161 1182 248 25 23 18 2488 2063 2054 2038

Table 11.5: Number of tRNAs in Each Family That Are Successfully Discriminated from the
Non-tRNAs Using a Threshold on the Discrimination Score.

regions) in GenBank. Roughly 20 non-tRNA sequences are created for each
length in the interval between 20 and 120. Four different grammars are then
created. The first grammar (ZeroTrain) is a control that is not trained on any
sequence and contains only prior information on tRNA. The other three gram-
mars (MT10CY10, MT100, and RandomTRNA618) are trained from different
sets as shown in table 11.3, using the tree-grammar EM algorithm. The four
grammars are compared on three tasks: multiple alignments, secondary struc-
ture prediction, and discrimination.

11.8.1 Multiple Alignments

All 1222 tRNA sequences in the data set are aligned using each of the four
grammars. The best multiple alignment is obtained with RandomTRNA618.
The predicted alignment agrees substantially with the original data set align-
ment (figure 11.3). Boundaries of helices and loops are the same. The major
difference is the extra arm, which is highly variable in both length and se-
quence. There are also cases [460] where the grammar alignments suggest
small improvements over the original alignment.

11.8.2 RNA Secondary Structure Prediction

As for secondary structure, in most cases the Viterbi parse tree gives the cor-
rect secondary structure. Table 11.4 gives the percentages of base pairs in the
original alignment that are also present in the secondary structure predicted
by each grammar. For ARCHAE and VIRUS, all three trained grammars achieve
100% recognition. For CY, CYANELCHLORO, and EUBACT the agreement is also
very good. In the case of PART III, it is substantially weaker.
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11.8.3 Discrimination

Discrimination for each of the four grammars is tested by computing the nor-
malized scores of all 2016 non-tRNA sequences and comparing them against
the scores of the 1222 tRNA sequences in the data set. Non-tRNA rarely have a
normalized score above 4, so that a discrimination threshold is set at 5. Table
11.5 summarizes the results by displaying the number of tRNAs in each family
that are successfully discriminated from the non-tRNAs in this way. Some of
the respective histograms are given in figure 11.4.

Training with as few as 20 sequences significantly improves the detec-
tion rates, as seen by comparing the results of MT10CY10 and ZeroTrain.
MT10CY10 perfectly discriminates tRNAs from non-tRNA sequences, ex-
cept for the subsets MT and PART III, where the ZeroTrain grammar fails.
MT10CY10 discriminates reasonably well on the MT subset but not on PART
III. Setting aside PART III sequences, MT10CY10 discriminates 399 out of
422 mitochondrial sequences, performing almost as well as the grammars
trained on many more tRNA sequences. None of the grammars achieves good
discrimination on PART III sequences, not even RandomTRNA618, which is
trained in part on such sequences. Training on PART III sequences improves
performance on some of these sequences, but half of them remain with a
normalized score below the threshold of 5.

11.9 Future Directions

We have reviewed the basic theory of formal languages and grammars. We
have seen how stochastic grammars can be applied to biological sequences
by generalizing the dice model and the HMM ideas. SCFGs, in particular,
and the corresponding learning algorithms have been used to derive statis-
tical models of tRNA. The trained grammars have been used to align, fold,
and discriminate tRNA sequences with good results. The SCFG approach is
a viable method for determining tRNA secondary structure. It complements
the two preexisting methods, one based on phylogenetic analysis of homolo-
gous sequences [186, 565, 278] and the other on thermodynamic considera-
tions [521, 222, 527, 585]. SCFGs for RNA, however, have been less thoroughly
tested than HMMs for protein families and additional work is required to es-
tablish this approach further. Whereas the SCFGs are capable of finding global
structural alignments of RNA, a new dynamical programming algorithm for
obtaining local structural alignments has recently been giving good results
[220, 221]. This local method is an extension of the Smith–Waterman align-
ment scheme combined with another dynamical programming technique for
finding the maximal number of complementary nucleotide pairs.
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Figure 11.4: Some of the Normalized Score Histograms Showing Results of Discrimination Tests
with Various Grammars.
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The grammar methods described in this chapter have some limitations.
First, they are computationally intensive, so that, in their present form, they
become somewhat impractical for long sequences, typically above N = 200 or
so. Second, not all RNA structures can be captured by an SCFG. The associated
parse trees cannot capture tertiary interactions such as pseudoknots and non-
pairwise interactions, which so far have been ignored. Third, the method as
described in this chapter does not include a model for introns that are present
in some tRNA genes. Such limitations point to a few obvious directions for
future work, including the following:

• Algorithmic and perhaps hardware speed improvements

• Development of grammars, perhaps graph grammars, or other models,
and the corresponding training algorithms to incorporate RNA tertiary
structures, and possibly the tertiary structure of other molecules

• Combination of SCFGs in modular ways, as for HMMs, to model more
complex RNA sequences, including the corresponding introns—work in
this direction is reported in [156]

• Modeling larger and more challenging RNA sequences, such as rRNA

• Finally, along the lines of chapter 9, developing hybrid SCFG/NN archi-
tectures (or SG/NN), where an NN is used to compute the parameters of
a SCFG and/or to modulate or mix different SCFGs.
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Chapter 12

Microarrays and Gene
Expression

12.1 Introduction to Microarray Data

A number of new microarray-based technologies have been developed over
the last few years, and technological development in this area is likely to con-
tinue at a brisk pace. These technologies include DNA hybridization arrays
(gene expression arrays, oligonucleotide arrays for sequencing and polymor-
phism), protein arrays, tissue arrays, and combinatorial chemistry arrays. By
making possible the combinatorial interaction of a large number of molecules
with a large library, these high-throughput approaches are rapidly generating
terabytes of information that are overwhelming conventional methods of bio-
logical analysis. In this chapter, we focus primarily on DNA gene expression
microarrays. We closely follow the derivation in [44] and show how the general
probabilistic framework can be applied systematically to array data. A more
complete treatment of DNA microarrays can be found in [43].

DNA gene expression microarrays allow biologists to study genome-wide
patterns of gene expression [148, 160, 263] in any given cell type, at any given
time, and under any given set of conditions. In these arrays, total RNA is
reverse-transcribed to create either radioactive- or fluorescent-labeled cDNA
that is hybridized with a large DNA library of gene fragments attached to a
glass or membrane support. Phosphorimaging or other imaging techniques
are used to produce expression measurements for thousands of genes un-
der various experimental conditions. Use of these arrays is producing large
amounts of data, potentially capable of providing fundamental insights into
biological processes ranging from gene function to development, cancer, and
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aging, and pharmacology [498, 567, 7, 217, 354, 511, 7, 554, 369, 169, 171].
Even partial understanding of the available information can provide valuable
clues. For instance, co-expression of novel genes may provide leads to the
functions of many genes for which information is not available currently. Data
analysis techniques for microarray data, however, are still at an early stage of
development [581].

Gene expression array data can be analyzed on at least three levels of in-
creasing complexity. The first level is that of single genes, where one seeks
to establish whether each gene in isolation behaves differently in a control
versus a treatment situation. The second level is multiple genes, where clus-
ters of genes are analyzed in terms of common functionalities, interactions,
co-regulation, etc. The third level attempts to infer the underlying gene and
protein networks that ultimately are responsible for the patterns observed.

To begin with, we assume for simplicity that for each gene X the data con-
sists of a set of measurements xc1 , . . . , xcnc and xt1, . . . , xtnt representing expres-
sion levels, or rather their logarithms, in both a control and treatment situ-
ation. Treatment is of course taken in a broad sense to mean any condition
different from the control. For each gene, the fundamental question we wish
to address is whether the level of expression is significantly different in the
two situations. While it might seem that standard statistical techniques could
easily address such a problem, this is in fact not the case.

One approach commonly used in the literature is a simple-minded fold ap-
proach, in which a gene is declared to have significantly changed if its average
expression level varies by more than a constant factor, typically 2, between
the treatment and control conditions. Inspection of gene expression data sug-
gests, however, that such a simple “2-fold rule” is unlikely to yield optimal
results, since a factor of 2 can have quite different significance in different
regions of the spectrum of expression levels.

A related approach to the same question is the use of a t-test, for instance
on the logarithm of the expression levels. This is similar to the fold approach
because the difference between two logarithms is the logarithm of their ratio.
This approach is not necessarily identical to the first because the logarithm
of the mean is not equal to the mean of the logarithms; in fact, it is always
strictly greater by convexity of the logarithm function. But with a reasonable
degree of approximation, a test of the significance of the difference between
the log expression levels of two genes is equivalent to a test of whether or not
their fold change is significantly different from 1.

In a t-test, the empirical means mc and mt and variances s2
c and s2

t are
used to compute a normalized distance between the two populations in the
form

t = (mc −mt)/

√√√ s2
c

nc
+ s2

t
nt

(12.1)
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where, for each population, m =∑i xi/n and s2 =∑i(xi−m)2/(n−1) are the
well-known estimates for the mean and standard deviation. It is well known
from the statistics literature that t follows approximately a Student distribu-
tion (appendix A), with

f = [(s
2
c /nc)+ (s2

t /nt)]2

(s2
c /nc)2
nc−1 + (s2

t /nt)2
nt−1

(12.2)

degrees of freedom. When t exceeds a certain threshold depending on the con-
fidence level selected, the two populations are considered to be different. Be-
cause in the t-test the distance between the population means is normalized by
the empirical standard deviations, this has the potential for addressing some
of the shortcomings of the fixed fold-threshold approach. The fundamental
problem with the t-test for microarray data, however, is that the repetition
numbers nc and/or nt are often small because experiments remain costly or
tedious to repeat, even with current technology. Small populations of size
n = 1,2, or 3 are still very common and lead, for instance, to significant un-
derestimates of the variances. Thus a better framework is needed to address
these shortcomings.

12.2 Probabilistic Modeling of Array Data

12.2.1 Gaussian Model

Array data requires a probabilistic approach because it is highly noisy and vari-
able, and many relevant variables remain unobserved behind the massive data
sets. In order to develop a probabilistic approach for array data, the lessons
learnt with sequence data are worth remembering. In sequence data, we saw in
chapter 3 that the simplest probabilistic model is that of a die associated with
the average composition of the family of DNA, RNA, or protein sequences un-
der study. The next level of modeling complexity is a first-order Markov model
with one die per position or per column in a multiple alignment. We have seen
how, in spite of their simplicity, these models are still useful as a background,
for instance, against which the performances of more sophisticated models
are assessed.

In array data, the simplest model would assume that all data points are
independent from one another and extracted from a single continuous distri-
bution, for instance a Gaussian distribution. While trivial, this “Gaussian die”
model still requires the computation of interesting quantities, such as the av-
erage level of activity and its standard deviation, that can be useful to calibrate
or assess global properties of the data. The next equivalent level of modeling
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is a set of independent distributions, one for each dimension, for instance each
gene. While it is obvious that genes interact with one another in complex ways
and therefore are not independent, the independence approximation is still
useful and underlies any attempt, probabilistic or other, to determine whether
expression-level differences are significant on a gene-by-gene basis.

Here we first assume that the expression-level measurements of a gene in
a given situation have a roughly Gaussian distribution. In our experience, with
common technologies this assumption is reasonable, especially for the loga-
rithm of the expression levels, corresponding to lognormal raw expression lev-
els. To the best of our knowledge, large-scale replicate experiments have not
yet been carried out to make more precise assessments. It is clear, however,
that other distributions, such as gammas or mixtures of Gaussians/gammas,
could be introduced at this stage. These would impact the details of the analy-
sis (see also [558, 403]), but not the general Bayesian probabilistic framework.

Thus, in what follows we assume that the data has been pre-processed—
including taking logarithms if needed—to the point that we can model the cor-
responding measurements of each gene in each situation (treatment or control)
with a normal distribution N (x;µ,σ2). For each gene and each condition, we
have a two-parameter model w = (µ,σ2), and by focusing on one such model
we can omit indices identifying the gene or the condition. Assuming that the
observations are independent, the likelihood is given by

P(D|µ,σ2) ≈
∏
i
N (xi;µ,σ2)

= C(σ2)−n/2 exp(−
∑
i
(xi − µ)2/2σ2)

= C(σ2)−n/2 exp(−(n(m− µ)2 + (n− 1)s2)/2σ2) (12.3)

where i ranges over replicate measurements. In this chapter, we write C to
denote the normalizing constant of any distribution (C = 1/Z). The likelihood
depends only on the sufficient statistics n, m, and s2. In other words, all the
information about the sample that is relevant for the likelihood is summarized
in these three numbers. The case in which either the mean or the variance of
the Gaussian model is supposed to be known is of course easier and is well
studied in the literature [86, 431].

A full Bayesian treatment requires introducing a prior P(µ,σ2). The choice
of a prior is part of the modeling process, and several alternatives [86, 431]
are possible, a sign of the flexibility of the Bayesian approach rather than its
arbitrariness. Here a conjugate prior is convenient and adequately captures
several properties of DNA microarray data including, as we shall see, the fact
that µ and σ2 are generally not independent.
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12.2.2 The Conjugate Prior

Recall that when both the prior and the posterior have the same functional
form, the prior is said to be a conjugate prior. When estimating the mean
alone for a normal model of known variance, the obvious conjugate prior is
also a normal distribution. In the case of dice models for biological sequences,
we have seen that the standard conjugate prior is a Dirichlet distribution. The
form of the likelihood in (12.3) shows that the conjugate prior density must
also have the form P(µ|σ2)P(σ2), where the marginal P(σ2) correponds to a
scaled inverse gamma distribution (equivalent to 1/σ2 having a gamma distri-
bution, see appendix A), and the conditional distribution P(µ|σ2) is normal.

This leads to a hierarchical model with a vector of four hyperparameters
for the prior α = (µ0, λ0, ν0 and σ2

0 ) with the densities

P(µ|σ2) =N (µ;µ0, σ2/λ0) (12.4)

and
P(σ2) = I(σ2;ν0, σ2

0 ). (12.5)

The expectation of the prior is finite if and only if ν0 > 2. The prior P(µ,σ2) =
P(µ,σ2|α) is given by

Cσ−1(σ2)−(ν0/2+1) exp
[
− ν0

2σ2σ
2
0 −

λ0

2σ2 (µ0 − µ)2
]
. (12.6)

Notice that it makes perfect sense with array data to assume a priori that µ
and σ2 are dependent, as suggested immediately by visual inspection of typical
microarray data sets (figure 12.1). The hyperparameters µ0 and σ2/λ0 can be
interpreted as the location and scale of µ, and the hyperparameters ν0 and σ2

0
as the degrees of freedom and scale of σ2. After some algebra, the posterior
has the same functional form as the prior:

P(µ,σ2|D,α) =N (µ;µn,σ2/λn)I(σ2;νn,σ2
n) (12.7)

with

µn = λ0

λ0 +nµ0 + n
λ0 +nm (12.8)

λn = λ0 +n (12.9)

νn = ν0 +n (12.10)

νnσ2
n = ν0σ2

0 + (n− 1)s2 + λ0n
λ0 +n(m− µ0)2. (12.11)

The parameters of the posterior combine information from the prior and the
data in a sensible way. The mean µn is a convex weighted average of the
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prior mean and the sample mean. The posterior degree of freedom νn is the
prior degree of freedom plus the sample size. The posterior sum of squares
νnσ2

n is the sum of the prior sum of squares ν0σ2
0 , the sample sum of squares

(n− 1)s2, and the residual uncertainty provided by the discrepancy between
the prior mean and the sample mean.

While it is possible to use a prior mean µ0 for gene expression data, in
many situations it is sufficient to use µ0 =m. The posterior sum of squares is
then obtained precisely as if one had ν0 additional observations all associated
with deviation σ2

0 . While superficially this may seem like setting the prior after
having observed the data [372], a similar effect is obtained using a preset value
µ0 with λ0 → 0, i.e., with a very broad standard deviation so that the prior belief
about the location of the mean is essentially uniform and vanishingly small.
The selection of the hyperparameters for the prior is discussed in more detail
below.

It is not difficult to check that the conditional posterior distribution
P(µ|σ2,D,α) of the mean is normal N (µn,σ2/λn). The marginal posterior
P(µ|D,α) of the mean is Student t(νn, µn,σ2

n/λn), and the marginal posterior
P(σ2|D,α) of the variance is scaled inverse gamma I(νn,σ2

n).
In the literature, semi-conjugate prior distributions also are used where

the functional form of the prior distributions on µ and σ2 are the same as
in the conjugate case (normal and scaled inverse gamma, respectively) but in-
dependent of each other, i.e. P(µ,σ2) = P(µ)P(σ2). However, as previously
discussed, this assumption of independence is unlikely to be suitable for DNA
microarray data. More complex priors also could be constructed using mix-
tures, mixture of conjugate priors leading to mixtures of conjugate posteriors.

12.2.3 Parameter Point Estimates

The posterior distribution P(µ,σ2|D,α) is the fundamental object of Bayesian
analysis and contains the relevant information about all possible values of µ
and σ2. However, in order to perform the t-test described above, for instance,
we need to collapse this information-rich distribution into single point esti-
mates of the mean and variance of the expression level of a gene in a given
situation. This can be done in a number of ways. In general, the most robust
answer is obtained using the mean of the posterior (MP) estimate. An alter-
native is to use the mode of the posterior, or MAP (maximum a posteriori)
estimate. For completeness, we derive both kinds of estimates.
By integration, the MP estimate is given by

µ = µn and σ2 = νn
νn − 2

σ2
n (12.12)
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provided νn > 2. If we take µ0 =m, we then get the following MP estimate

µ =m and σ2 = νnσ2
n

νn − 2
= ν0σ2

0 + (n− 1)s2

ν0 +n− 2
(12.13)

provided ν0 +n > 2. This is the default estimate implemented in the Cyber-T
software described below. From (12.7), the MAP estimates are

µ = µn and σ2 = νnσ2
n

νn − 1
(12.14)

If we use µ0 =m, these reduce to

µ =m and σ2 = νnσ2
n

νn − 1
= ν0σ2

0 + (n− 1)s2

ν0 +n− 1
. (12.15)

Here the modes of the marginal posterior are given by

µ = µn and σ2 = νnσ2
n

νn + 2
. (12.16)

In practice, (12.13) and (12.15) give similar results and can be used with
gene expression arrays. The slight differences between the two closely parallel
what is seen with Dirichlet priors on sequence data in chapter 3, (12.13) being
generally a slightly better choice. The Dirichlet prior is equivalent to the intro-
duction of pseudo-counts to avoid setting the probability of any amino acid or
nucleotide to zero. In array data, few observation points are likely to result in a
poor estimate of the variance. With a single point (n = 1), for instance, we cer-
tainly want to refrain from setting the corresponding variance to zero; hence
the need for regularization, which is achieved by the conjugate prior. In the
MP estimate, the empirical variance is modulated by ν0 “pseudo-observations”
associated with a background variance σ2

0 .

12.2.4 Full Bayesian Treatment and Hyperparameter Point Estimates

At this stage of modeling, each gene is associated with two models wc =
(µc,σ2

c ) and wt = (µt, σ2
t ), two sets of hyperparameters αc and αt , and

two posterior distributions P(wc |D,αc) and P(wt|D,αt). A full probabilistic
treatment would require introducing prior distributions over the hyperparam-
eters. These could be integrated out to obtain the true posterior probabilities
P(wc|D) and P(wt|D), which then could be integrated over all values of wt
and wc to determine whether or not the two models are different. Notice that
this approach is significantly more general than the plain t-test and could in
principle detect interesting changes that are beyond the scope of the t-test.



306 Microarrays and Gene Expression

For instance, a gene with the same mean but a very different variance between
the control and treatment situations goes undetected by a t-test, although the
change in variance might be biologically relevant. Even if we restrict ourselves
to only the means µc and µt and these have a Gaussian posterior distribution,
the probability P(|µc − µt| < ε) must be estimated numerically. While the lat-
ter is not difficult to perform with today’s computers, it is also possible to use
simpler and more approximate strategies to the full Bayesian treatment that
rely solely on point estimates.

Point estimates, however, entail hyperparameters that can be addressed in
a number of ways [372, 375]. Here, again, one possibility is to define a prior
on the hyperparameters and try to integrate them out in order to compute
the true posterior P(w|D) and determine the location of its mode, leading to
true MAP estimates of w. More precisely, this requires integrating P(w|α)
and P(w|α|D) with respect to the hyperparameter vector α. An alternative
that avoids the integration of the hyperparameters is the evidence framework
described in [372]. In the evidence framework, we compute point estimates of
the hyperparameters by MAP estimation (MP would again require integrating
over hyperparameters) over the posterior

P(α|D) = P(D|α)P(α)
P(D)

. (12.17)

If we take a uniform prior P(α), then this is equivalent to maximizing the
evidence P(D|α)

P(D|α) = P(D|w,α)P(w|α)/P(w|D,α)
= P(D|w)P(w|α)/P(w|D,α). (12.18)

In principle, computing the evidence requires integrating out the parameters
w of the model. Using the expression for the likelihood and the conjugate
prior and posterior, however, we can obtain the evidence without integration,
directly from (12.18):

P(D|α) = (2π)−n/2
√
λ0√
λn

(ν0/2)ν0/2

(νn/2)νn/2
σν0

0

σνnn
Γ(νn/2)
Γ(ν0/2)

. (12.19)

The partial derivatives and critical points of the evidence are discussed in [44]
where it is shown, for instance, that the mode is achieved for µ0 =m.

12.2.5 Bayesian Hypothesis Testing

In essence so far we have modeled the log-expression level of each gene in
each situation using a Gaussian model. If all we care about is whether a given
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gene has changed or not, we could model directly the difference between the
log-expression levels in the control and treatment cases. These differences
can be considered pairwise or in paired fashion, as is more likely the case with
current microarray technology where the logarithm of the ratio between the
expression levels in the treatment and control situations is measured along
two different channels (red and green).

We can model again the differences xt − xc with a Gaussian N (µ,σ2).
Then the null hypothesis H, given the data, is that µ = 0 (no change). To avoid
assigning a probability of 0 to the null hypothesis, a Bayesian approach here
must begin by giving a non-zero prior probability for µ = 0, which may appear
a little contrived. In any case, following the lines of the previous derivation for
the conjugate prior, we can set P(σ2) = I(σ2;ν0, σ2

0 ). For the mean µ, we use
the mixture

µ =
{

0 : with probability p
N (0, σ2/λ) : with probability 1− p (12.20)

The parameter p could be fixed from previous experiments, or treated as an
hyperparameter with, for instance, a Dirichlet prior. We leave as an exercise
for the reader to compute the relevant statistics log[P(H̄)/P(H)].

12.2.6 Implementation

For efficiency, an intermediate solution has been implemented in a Web server
called Cyber-T1 [44, 366]. In this approach, we use the t-test with the regu-
larized standard deviation of (12.13) and the number of degrees of freedom
associated with the corresponding augmented populations of points, which
incidentally can be fractional. In Cyber-T, plain and Bayesian versions of the
t-test can be performed on both the raw data and the log-transformed data.

In the simplest case, where we use µ0 = m, one must select the values of
the background standard deviation σ2

0 , and its strength ν0. The parameter ν0

represents the degree of confidence in the background variance σ2
0 versus the

empirical variance. The value of ν0 can be set by the user. The smaller n, the
larger ν0 ought to be. A simple rule of thumb is to assume that l > 2 points are
needed to estimate the standard deviation properly and keep n+ ν0 = l. This
allows a flexible treatment of situations in which the number n of available
data points varies from gene to gene. A reasonable default is to use l = 10.
A special case can be made for genes with activity levels close to the minimal
detection level of the technology being used. The measurements for these
genes being particularly unreliable, it may be wise to use a stronger prior for
them with a higher value of ν0.

1Accessible at: http://128.200.5.223/CyberT/.
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For σ0, one could use the standard deviation of the entire set of observa-
tions or, depending on the situation, of particular categories of genes. In a
flexible implementation, the background standard deviation is estimated by
pooling together all the neighboring genes contained in a window of size ws.
Cyber-T automatically ranks the expression levels of all the genes and lets the
user choose this window size. The default is ws = 101, corresponding to 50
genes immediately above and below the gene under consideration. Adaptive
window sizes and regression estimates for σ2

0 can also be considered.

12.2.7 Simulations

We have used the Bayesian approach and Cyber-T to analyze a number of pub-
lished and unpublished data sets. In every high density array experiments we
have analyzed, we have observed a strong scaling of the expression variance
over replicated experiments with the average expression level (on both a log-
transformed and raw scale). As a result, a threshold for significance based
solely on fold changes is likely to be too liberal for genes expressed at low
levels and too conservative for highly expressed genes. While several biologi-
cally relevant results are reported elsewhere, we have found that the Bayesian
approach compares favorably to a simple fold approach or a straight t-test
and partially overcomes deficiencies related to low replication in a statistically
consistent way [366].

One particularly informative data set for comparing the Bayesian approach
to simple t-test or fold change is the high density array experiment reported
in [19] comparing wild type Escherichia coli cells to mutant cells for the global
regulatory protein IHF (integration host factor). The main advantage of this
data set is its four-fold replication for both wild type and mutant alleles. The
regularizing effect of the prior based on the background standard deviation is
shown for this data in Figure 12.1 and in the simulation described below. The
figure clearly shows that standard deviations vary substantially over the range
of expression levels, in this case roughly in a monotonic decreasing fashion,
although other behaviors also have been observed. Interestingly, in these plots
the variance in log-transformed expression levels is higher for genes expressed
at lower levels rather than at higher ones. These plots confirm that genes
expressed at low or near background levels may require a stronger value of ν0,
or alternatively could be ignored in expression analyses. The variance in the
measurement of genes expressed at a low level is large enough that in many
cases it will be difficult to detect significant changes in expression for this
class of loci.

In analyzing the data we found that large fold changes in expression
were often associated with p-values not indicative of statistical change in
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the Bayesian analysis, and conversely subtle fold changes were often highly
significant as judged by the Bayesian analysis. In these two situations, the
conclusions drawn using the Bayesian approach appear robust relative to
those drawn from fold change alone, as large non-statistically significant fold
changes were often associated with large measurement errors, and statistically
significant genes showing less than two fold changes were often measured
very accurately. As a result of the level of experimental replication seen in
[19], we were able to look at the consistency of the Bayesian estimator relative
to the t-test. We found that in independent samples of size 2 drawn from the
IHF data set (i.e., two experiments versus two controls) the set of 120 most
significant genes identified using the Bayesian approach had approximately
50% of their members in common, whereas the set of 120 most significant
genes identified using the t-test had only approximately 25% of their members
in common. This suggests that for two fold replication the Bayesian approach
is approximately twice as consistent as a simple t-test at identifying genes as
up- or down-regulated, although with only two fold replication there is a great
deal of uncertainty associated with high density array experiments.

To further assess the Bayesian approach, an artificial data set can be gen-
erated assuming Gaussian distribution of log expressions, with means and
variances in ranges similar to those encountered in the data set of [19], with
1000 replicates for each parameter combination. Selected means for the log
data and associated standard deviations (in brackets) are as follows: −6 (0.1),
−8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). On this artificially generated data, we
can compare the behavior of a simple ratio (2-fold and 5-fold) approach, with
a simple t-test, with the Bayesian t-test using the default settings of Cyber-T.
The main results, reported in Table 12.1, can be summarized as follows:

• By 5 replications (5 control and 5 treatment) the Bayesian approach and
t-test give similar results.

• When the number of replicates is “low” (2 or 3), the Bayesian approach
performs better than the t-test.

• The false positive rate for the Bayesian and t-test approach are as ex-
pected (0.05 and 0.01 respectively) except for the Bayesian with very
small replication (i.e., 2) where it appears elevated.

• The false positive rate on the ratios is a function of expression level and
is much higher at lower expression levels. At low expression levels the
false positive rate on the ratios is unacceptably high.

• For a given level of replication the Bayesian approach at p < 0.01 de-
tects more differences than a 2-fold change except for the case of low
expression levels (where the false positive rate from ratios is elevated).
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Figure 12.1: DNA Microarray Experiment on Escherichia coli. Data obtained from reverse tran-
scribed P33 labeled RNA hybridized to commercially available nylon arrays (Sigma Genosys)
containing each of the 4,290 predicted E. coli genes. The sample included a wild-type strain
(control) and an otherwise isogenic strain lacking the gene for the global regulatory gene, inte-
gration host factor (IHF) (treatment). n = 4 for both control and experimental situations. The
horizontal axis represents the mean µ of the logarithm of the expression levels, and the vertical
axis shows the corresponding standard deviations (std=σ ). The left column corresponds to raw
data, the right column to regularized standard deviations using Equation (12.13). Window size
isws = 101 and l = 10 (see main text). Data are from [19].

• The Bayesian approach with 2 replicates outperforms the t-test with 3
replicates (or 2 versus 4 replicates).

• The Bayesian approach has a similar level of performance when compar-
ing 3 treatments to 3 controls, or 2 treatments to 4 controls. This sug-
gests an experimental strategy where the controls are highly replicated
and a number of treatments less highly replicated.
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Log expression Ratio Plain t-test Bayes
n from to 2-fold 5-fold p < 0.05 p < 0.01 p < 0.05 p < 0.01
2 −8 −8 1 0 38 7 73 9
2 −10 −10 13 0 39 11 60 11
2 −12 −12 509 108 65 10 74 16
2 −6 −6.1 0 0 91 20 185 45
2 −8 −8.5 167 0 276 71 730 419
2 −10 −11 680 129 202 47 441 195
3 −8 −8 0 0 42 9 39 4
3 −10 −10 36 0 51 11 39 6
3 −12 −12 406 88 44 5 45 4
3 −6 −6.1 0 0 172 36 224 60
3 −8 −8.5 127 0 640 248 831 587
3 −10 −11 674 62 296 139 550 261
5 −8 −8 0 0 53 13 39 8
5 −10 −10 9 0 35 6 31 3
5 −12 −12 354 36 65 11 54 4
5 −6 −6.1 0 0 300 102 321 109
5 −8 −8.5 70 0 936 708 966 866
5 −10 −11 695 24 688 357 752 441

2v4 −8 −8 0 0 35 4 39 6
2v4 −10 −10 38 0 36 9 40 3
2v4 −12 −12 446 85 46 17 43 5
2v4 −6 −6.1 0 0 126 32 213 56
2v4 −8 −8.5 123 0 475 184 788 509
2v4 −10 −11 635 53 233 60 339 74

Table 12.1: Number of Positives Detected out of 1000 Genes. Data was generated using normal
distribution on a log scale in the range of Arfin et al. 2000 [19], with 1000 replicates for each
parameter combination. Means of the log data and associated standard deviations (in brackets)
are as follows: −6 (0.1), −8 (0.2), −10 (0.4), −11 (0.7), −12 (1.0). For each value of n, the first
three experiments correspond to the case of no change and therefore yield false positive rates.
Analysis was carried out using Cyber-T with default settings (ws = 101, l = 10) and degrees of
freedom n+ ν0 − 2.

12.2.8 More Complex Probabilistic Models

We have developed a probabilistic framework for array data analysis to ad-
dress a number of current approach shortcomings related to small sample
bias and the fact that fold differences have different significance at different
expression levels. The framework is a form of hierarchical Bayesian modeling
with Gausssian gene-independent models. Although the Gaussian represen-
tation requires further testing, other distributions can easily be incorporated
in a similar framework. While there can be no perfect substitute for exper-
imental replication (see also [355]), in simulations and controlled replicated
experiments [366] it has been shown that the approach has a regularizing ef-
fect on the data, that it compares favorably to a conventional t-test, or simple
fold-approach and that it can partially compensate for the absence of replica-
tion.

Depending on goals and implementation constraints, the method can be
extended in a number of directions. For instance, regression functions could
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be computed off-line to establish the relationship between standard deviation
and expression levels and used to produce background standard deviations.
Another possibility is to use adaptive window sizes to compute the local back-
ground variance, where the size of the window could depend, for instance,
on the derivative of the regression function. In an expression range in which
the standard deviation is relatively flat (i.e. between −8 and −4 in figure 12.1),
the size of the window is less relevant than in a region where the standard
deviation varies rapidly (i.e., between −12 and −10 in figure 12.1). A more
complete Bayesian approach could also be implemented, for instance integrat-
ing the marginal posterior distributions, which in the case considered here are
Student distributions, to estimate the probability P(µc ≈ µt|D,αt,αc).

The approach also can be extended to more complex designs and/or de-
signs involving gradients of an experimental variable and/or time series de-
signs. Examples would include a design in which cells are grown in the pres-
ence of different stressors (urea, ammonia, oxygen peroxide), or when the
molarity of a single stressor is varied (0, 5, 10 mM). Generalized linear and
nonlinear models can be used in this context. The most challenging problem,
however, is to extend the probabilistic framework towards the second level of
analysis, taking into account possible interactions and correlations amongst
genes. If two or more genes have similar behavior in a given treatment sit-
uation, decisions regarding their expression changes can be made more ro-
bustly at the level of the corresponding cluster. Multivariate normal models
and Gaussian processes (appendix E) could provide the starting probabilistic
models for this level of analysis.

With a multivariate normal model, for instance, µ is a vector of means and
Σ is a symmetric positive definite covariance matrix with determinant |Σ|. The
likelihood has the form

C|Σ|−n/2 exp[−1
2

n∑
i=1

(Xi − µ)tΣ−1(Xi − µ)]. (12.21)

The conjugate prior, generalizing the normal-scaled-inverse-gamma distribu-
tion, is based on the inverse Wishart distribution (appendix A), which general-
izes the scaled inverse gamma distribution and provides a prior on Σ. In anal-
ogy with the one-dimensional case, the conjugate prior is parameterized by
(µ0,Λ0/λ0, ν0,Λ0). Σ has an inverse Wishart distribution with parameters ν0

and Λ−1
0 . Conditioned on Σ, µ has a multivariate normal prior N (µ;µ0,Σ/λ0).

The posterior then has the same form, a product of a multivariate normal with
an inverse Wishart, parameterized by (µn,Λn/λn, νn,Λn). The parameters sat-
isfy

µn = λ0

λ0 +nµ0 + n
λ0 +nm
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λn = λ0 +n
νn = ν0 +n

Λn = Λ0 +
n∑
1

(Xi −m)(Xi −m)t

+ λ0n
λ0 +n(m− µ0)(m− µ0)t. (12.22)

Estimates similar to (12.13) can be derived for the multidimensional case.
While multivariate normal and other related models may provide a good

starting point, good probabilistic models for higher-order effects influencing
array data are still at an early stage of development. Most approaches so far
have concentrated on more or less ad hoc applications of clustering methods.

12.3 Clustering

12.3.1 Overview

At the next level of complexity, we want to remove the simplistic assumption
that, for instance, all the genes are independent. This is where we want to
begin to look at the covariance matrix of the genes, whether there exist par-
ticular clusters of related genes, and so forth. Besides array data, clustering
can be applied to many other problems in bioinformatics, including several
sequence-analysis problems. Therefore here we also try to provide a brief but
broad perspective on clustering that extends somewhat beyond the analysis of
array data.

Clustering is a fundamental technique in exploratory data analysis and pat-
tern discovery, aimed at extracting underlying cluster structures. Clustering,
however, is a “fuzzy” notion without a single precise definition. Dozens of
clustering algorithms exist in the literature and a number of ad hoc cluster-
ing procedures, ranging from hierarchical clustering to k-means, have been
applied to DNA microarray data [160, 7, 253, 511, 484, 124, 194], without any
clear emerging consensus. Because of the variety and “open” nature of cluster-
ing problems, it is unlikely that a systematic exhaustive treatment of clustering
can be given. There are a number of important issues to consider in clustering
and clustering algorithms, especially in the context of gene expression.

Data Types

At the highest level, clustering algorithms can be distinguished depending on
the nature of the data being clustered. The standard case is when the data
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points are vectors in Euclidean space. But this is by no means the only pos-
sibility. In addition to vectorial data, or numerical data expressed in absolute
coordinates, there is the case of relational data, where data is represented in
relative coordinates by giving the pairwise distance between any two points.
In many cases the data is expressed in terms of a pairwise similarity (or dis-
similarity) measure that often does not satisfy the three axioms of a distance
(positivity, symmetry, and triangle inequality). There exist situations where
data configurations are expressed in terms of ternary or higher-order relation-
ships or where only a subset of all the possible pairwise similarities is given.
More importantly, there are cases where the data is not vectorial or relational
in nature, but essentially qualitative, as in the case of answers to a multiple-
choice questionnaire. This is sometimes also called nominal data. While at
the present time gene expression array data is predominantly numerical, this
is bound to change in the future. Indeed, the dimension “orthogonal to the
genes” covering different experiments, different patients, different tissues, dif-
ferent times, and so forth is at least in part non-numerical. As databases of
array data grow, in many cases the data will be mixed with both vectorial and
nominal components.

Supervised/Unsupervised

One important distinction amongst clustering algorithms is supervised versus
unsupervised. In supervised clustering, clustering is based on a set of given
reference vectors or classes. In unsupervised clustering, no predefined set of
vectors or classes is used. Hybrid methods are also possible in which an unsu-
pervised approach is followed by a supervised one. At the current early stage
of gene expression array experiments, unsupervised methods such as k-means
and self-organizing maps [511] are most commonly used. However supervised
methods have also been tried [194], in which clusters are predetermined us-
ing functional information or unsupervised clustering methods, and then new
genes are classified in the various clusters using a classifier, such as a neural
network or a support vector machines (appendix E), that can learn the decision
boundaries between the data classes.

Similarity

The starting point of several clustering algorithms, including several forms of
hierarchical clustering, is a matrix of pairwise similarities between the objects
to be clustered. The precise definition of similarity is crucial and can of course
greatly impact the output of the clustering algorithm. In sequence analysis,
for instance, similarity can be defined using a score matrix for gaps and sub-
stitutions and an alignment algorithm. In gene expression analysis, different
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measures of similarity can be used. Two obvious examples are Euclidean dis-
tance (or more generally Lp distances) and correlation between the vectors of
expression levels. The Pearson correlation coefficient is just the dot product
of two normalized vectors, or the cosine of their angle. It can be measured
on each pair of genes across, for instance, different experiments or different
time steps. Each measure of similarity comes with its own advantages and
drawbacks depending on the situation, and may be more or less suitable to a
given analysis. The correlation, for instance, captures similarity in shape but
places no emphasis on the magnitude of the two series of measurements and
is quite sensitive to outliers. Consider, for instance, measuring the activity of
two unrelated genes that are fluctuating close to the background level. Such
genes are very similar in Euclidean distance (distance close to 0), but dissimi-
lar in terms of correlation (correlation close to 0). Likewise, consider the two
vectors 1000000000 and 0000000001. In a sense they are similar since they
are almost always identical and equal to 0. On the other hand, their correlation
is close to 0 because of the two “outliers” in the first and last position.

The Number of Clusters

The choice of the number K of clusters is a particularly thorny issue that de-
pends, among other things, on the scale at which one looks at the data. While
there have been attempts to develop methods for the automatic determination
of the number of clusters [484], it is safe to say that an educated semi-manual
trial-and-error approach still remains one of the most efficient techniques, and
this is particularly true at the present stage for array data.

Cost Function and Probabilistic Interpretation

Any rigorous discussion of clustering on a given data set presupposes a prin-
cipled way of comparing different ways of clustering the same data, hence the
need for some kind of global cost/error function that can easily be computed.
The goal of clustering then is to try to minimize such a function. This is also
called parametric clustering in the literature, as opposed to nonparametric
clustering, where only local functions are available [72].

In general, at least for numerical data, this function will depend on quan-
tities such as the centers of the clusters, the distance from each point in a
cluster to the corresponding center, the average degree of similarity of the
points in a given cluster, and so forth. Such a function is often discontinuous
with respect to the underlying clustering of the data. Here again there are no
universally accepted functions and the cost function must be tailored to the
problem, since different cost functions can lead to different answers.
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Because of the advantages of probabilistic methods and modeling, it is
tempting to associate the clustering cost function with the negative log-
likelihood of an underlying probabilistic model. While this is formally always
possible, it is of most interest when the structure of the underlying proba-
bilistic model and the associated independence assumptions are clear. This
is when the additive terms of the cost function reflect the factorial structure
of the underlying probabilities and variables. As we shall see, this is the case
with mixture models, where the k-means clustering algorithm can be viewed
as a form of EM.

In the rest of this section, we describe in more detail two basic clustering al-
gorithms that can be applied to DNA microarray data, hierarchical clustering,
and k-means. Many other related approaches, including vector quantization
[104, 484], principal component analysis, factorial analysis, self-organizing
maps, NNs, and SVMs, can be found in the references.

12.3.2 Hierarchical Clustering

Clusters can result from a hierarchical branching process. Thus there exist
methods for automatically building a tree from data given in the form of pair-
wise similarities. In the case of gene expression, this is the approach used
in [160]. The output of such a method is a tree and not a set of clusters. In
particular, it is usually not obvious how to define clusters from the tree since
clusters are derived by cutting the branches of the tree at more or less arbi-
trary points.

The standard algorithm used in [160] recursively computes a dendrogram
that assembles all the elements into a tree, starting from the correlation (pr
distance or similarity) matrix C . At each step of the algorithm,

• The two most similar elements of the current matrix (highest correlation)
are computed and a node joining these two elements is created.

• An expression profile (or vector) is created for the node by averaging
the two expression profiles (or vectors) associated with the two points
(missing data can be ignored and the average can be weighted by the
number of elements in the vectors). Alternatively, a weighted average
of the distances is used to estimate the new distance between centers
without actually computing the profile.

• A new, smaller correlation matrix is computed using the newly computed
expression profile or vector and replacing the two joined elements with
the new node.

• With N starting points, the process is repeated at most N −1 times, until
a single node remains.
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This algorithm is familiar to biologists and has been used in sequence
analysis, phylogenetic trees, and average-linkage cluster analysis. As already
pointed out, after the construction of such a dendogram there is still a prob-
lem in how to display the result and which clusters to choose. At each node,
either of the two elements joined by the node can be ordered to the left or the
right of the other. Since there are N − 1 joining steps, the number of linear
orderings consistent with the structure of the tree is 2N−1. An optimal linear
ordering maximizing the combined similarity of all neighboring pairs in the
ordering cannot general be computed efficiently. A heuristic approximation is
used in [160] by weighting genes using average expression level, chromosome
position, and time of maximal induction. The main clusters obtained on a set
of gene expression data are shown indeed to have biological relevance.

12.3.3 K-Means, Mixture Models, and EM

K-Means

Of all clustering algorithms, k-means [153] has probably the cleanest proba-
bilistic interpretation as a form of EM (expectation maximization) on the un-
derlying mixture model. In a typical implementation of the k-means algorithm,
the number of clusters is fixed to some value K. K representative points or
centers are initially chosen for each cluster more or less arbitrarily. These are
also called centroids or prototypes. Then at each step,

• Each point in the data is assigned to the cluster associated with the clos-
est representative.

• After the assignment, new representative points are computed, for in-
stance by averaging or taking the center of gravity of each computed
cluster.

• The two procedures above are repeated until the system converges or
fluctuations remain small.

Hence notice that k-means requires choosing the number of clusters and also
being able to compute a distance or similarity between points and compute a
representative for each cluster given its members.

When the cost function corresponds to an underlying probabilistic mixture
model [172, 522], k-means is an online approximation to the classical EM al-
gorithm, and as such in general is bound to converge towards a solution that
is at least a local ML or MAP solution. A classical case is when Euclidean dis-
tances are used in conjunction with a mixture of Gaussian models. A related
application to a sequence clustering algorithm is described in [28].
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Mixtures Models and EM

To see this in more detail, imagine a data set D = (d1, . . . , dN) and an underly-
ing mixture model with K components of the form

P(d) =
K∑
k=1

P(Mk)P(d|Mk) =
K∑
k=1

λkP(d|Mk), (12.23)

where λk ≥ 0 and
∑
k λk = 1 and Mk is the model for cluster k. The Lagrangian

associated with the log-likelihood and the normalization constraints on the
mixing coefficients is given by

L =
N∑
i=1

log(
K∑
k=1

λkP(di|Mk))− µ(
K∑
k=1

λk − 1) (12.24)

with the corresponding critical equation

∂L
∂λk

=
N∑
i=1

P(di|Mk)
P(di)

− µ = 0. (12.25)

Multiplying each critical equation by λk and summing over k immediately
yields the value of the Lagrange multiplier µ = N. Multiplying again the critical
equation across by P(Mk) = λk, and using Bayes’s theorem in the form

P(Mk|di) = P(di|Mk)P(Mk)/P(di) (12.26)

yields

λ∗k =
1
N

N∑
i=1

P(Mk|di). (12.27)

Thus the ML estimate of the mixing coefficients for class k is the sample mean
of the conditional probabilities that di comes from model k. Consider now
that each model Mk has its own vector of parameters (wkj). Differentiating
the Lagrangian with respect to wkj gives

∂L
∂wkj

=
N∑
i=1

λk
P(di)

∂P(di|Mk)
∂wkj

. (12.28)

Substituting (12.26) in (12.28) finally provides the critical equation

N∑
i=1

P(Mk|di)∂ log P(di|Mk)
∂wkj

= 0 (12.29)
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for each k and j. The ML equations for estimating the parameters are weighted
averages of the ML equations ∂ log P(di|Mk))/∂wkj = 0 arising from each point
separately. As in (12.27), the weights are the probabilities of membership of
the di in each class.

As was precisely the case for HMMs, the ML equations (12.27) and (12.29)
can be used iteratively to search for ML estimates, yielding also another in-
stance of the EM algorithm. In the E step, the membership probabilities (hid-
den variables) of each data point are estimated for each mixture component.
The M step is equivalent to K separate estimation problems with each data
point contributing to the log-likelihood associated with each of the K com-
ponents with a weight given by the estimated membership probabilities. Dif-
ferent flavors of the same algorithm are possible depending on whether the
membership probabilities P(M|d) are estimated in hard or soft fashion during
the E step. The description of k-means given above correspond to the hard
version where these membership probabilities are either 0 or 1, each point be-
ing assigned to only one cluster. This is analogous to the use of the Viterbi
version of the EM algorithm for HMMs, where only the optimal path associated
with a sequence is used, rather than the family of all possible paths. Different
variations are also possible during the M step of the algorithms depending, for
instance, on whether the parameters wkj are estimated by gradient descent or
by solving (12.29) exactly. It is well known that the center of gravity of a set of
points minimizes its average quadratic distance to any fixed point. Therefore
in the case of a mixture of spherical Gaussians, the M step of the k-means algo-
rithm described above maximizes the corresponding quadratic log-likelihood
and provides an ML estimate for the center of each Gaussian component.

It is also possible to introduce priors on the parameters of each cluster in
the form

P(d) =
K∑
k=1

P(d|Mk,wk)P(wk|Mk)P(Mk) (12.30)

and/or on the mixture coefficients. This leads to more complex hierarchi-
cal probabilistic models that may prove useful for DNA array data, or even
sequence data. In sequence data, for instance, this could amount to having se-
quences produced by different dice, the dice coming from different factories,
the factories coming from different countries, and so forth, with probabilistic
distributions at each level of the hierarchy and on the corresponding proper-
ties. To the best of our knowledge, these hierarchical mixture models have not
yet been explored systematically in this context.
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12.4 Gene Regulation

Finally, at the third level of analysis DNA microarray expression data naturally
leads to many questions of gene regulation. Understanding gene regulation at
the system level is one of the most interesting and challenging problems in
biology, but one where most of the principles remain to be discovered. Here,
we mention only some of the main directions of research and provide a few
pointers to the literature.

One direction of analysis consists in mining regulatory regions, searching,
for instance, for transcription factor DNA binding sites and other regulatory
motifs. To some extent, such searches can be done on a genomic scale using
purely computational tools [530, 531, 232]. The basic idea is to compute the
number of occurrences of each N-mer, typically for values of N in the range
of 3 to 10, within an entire genome or within a particular subset of a genome,
such as all gene-upstream regions. N-mers that are overrepresented are of
particular interest and have been shown to comprise a number of known regu-
latory motifs. Distribution patterns of overreprsented N-mers can also be very
informative [232]. In any case, overrepresentation of course must be assessed
with respect to a good statistical background model, which can be a Markov
model of some order derived from the actual counts. When in addition gene-
expression data becomes available, further tuning of these mining procedures
becomes possible by looking, for instance, at overrepresentation in upstream
regions of genes that appear to be up-regulated (or down-regulated) under a
given condition [89, 231, 535, 111, 270]. Probabilistic algorithms such as EM
and Gibbs sampling naturally play an essential role in motif finding, due to
both the structural and positional variability of motifs (see programs such as
MEME and CONSENSUS). In any case, only a small subset of the motifs found
nowadays by these techniques are typically found also in the TRANSFAC [560]
database or in the current literature, and most must await future experimental
verification.

A second, more ambitious direction is to attempt to model and infer reg-
ulatory networks on a global scale, or along more specific subcomponents
[532, 190, 584] such as a pathway or a set of coregulated genes. One of
the major obstacles here is that we do not yet understand all the details of
transcription at the molecular level. For instance, we do not entirely under-
stand the role that noise plays in gene regulation [383, 243]. Furthermore,
there are very few examples of regulatory circuits for which detailed infor-
mation is available, and they all appear to be very complex [579]. On the
theoretical side, several mathematical formalisms have been applied to model
genetic networks. These range from discrete models, such as Boolean net-
works, as in the pioneering work of Kauffman [310, 311, 312] to continuous
models based on differential equations, such as continuous recurrent neural
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networks [391] or power-law formalism [537, 466, 258], probabilistic graphi-
cal models, and Bayesian networks [190]. None of these formalisms appear to
capture all the dimensions of gene regulation, and most of the work in this
area remains to be done. Additional references in this active area of research
can be found in the proceedings of the ISMB, PSB, and RECOMB conferences
of the last few years. Understanding biology at the system level (for instance
[88, 309, 239, 289, 576]), not only gene networks, but also protein networks,
signaling networks, metabolic networks, and specific systems, such as the im-
mune system or neuronal networks, is likely to remain at the center of the
bioinformatics efforts of the next few decades.
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Chapter 13

Internet Resources and Public
Databases

13.1 A Rapidly Changing Set of Resources

It is well known that resources available on the Internet are changing faster
than almost everything else in the world of information processing. This also
holds true for the dedicated tools available for biological sequence analysis.
New tools are constantly becoming available, while others that are still avail-
able are getting obsolete. It is not easy to follow the state of the art in the
many specialized areas of bioinformatics, where computational analysis is a
powerful alternative to significant parts of the experimental investigation one
may carry out.

Many of the tools offered the Internet are made available not by large or-
ganizations and research groups but by individual researchers many of whom
may be actively involved in the field for only a shorter period. The funding sit-
uation, even for some of the major computational services, may change from
year to year. This means that links are not updated regularly and that many
servers may not be kept running 24 hours per day. If a service gets popular,
the server behind it often will be upgraded sufficiently only after some delay.
However, in many cases this is counterbalanced by mirror servers established
by federal organizations, such as the NCBI in Washington, D.C., the EBI in Hinx-
ton, U.K., and DDJB in Japan.

One highly confusing feature of the “open bioinformatics market” is that
the same type of service can be available from many different sites based on
different implementations. This is, for example, the case for protein secondary
structure prediction, gene finding, and intron splice site prediction. The as-
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signment of solvent exposure to amino acids in proteins is another type of
prediction that is available from numerous sources. Since these methods most
often have been constructed and tested with different sets of data, it can be
hard even for specialists to assess objectively which method one should prefer.
Often it may be disadvantageous to try to single out one particular method;
instead following the statement from statistics that “averaging is better than
voting” and using many methods in concert may lead to a more robust and
reliable result.

It is notoriously hard to make benchmarks because benchmark sets of se-
quences often will overlap strongly with the sequences that went into the con-
struction of some of the algorithms. Some approaches will be created with
an inherent ability to “remember” the training data, while others are designed
to extract only the average and generalizable features. For such methods the
performance on the training set will only about reach the performance on a
test set.

As described in Chapter 1 (Section 1.2), the amount of sequence data grows
exponentially. Fortunately, the computing power in a typical PC or workstation
also grows exponentially and, moreover, is available at ever-decreasing cost.
For a long time computers have been getting twice as fast whenever the cost
has been reduced roughly by a factor of two. This means that every six to
ten months it gets twice as expensive, in terms of the economical cost, to
perform the same search against the public databases using a query sequence
or a regular expression. This means also that algorithms should constantly be
redesigned in order to maintain the status quo.

13.2 Databases over Databases and Tools

In the area of biological sequence analysis there is a long tradition of creating
databases over databases as a means for establishing an overview as well as
for managing access to the vast number of resources. One of the earliest ones
was the LiMB database (Listing of Molecular Biology databases), which has been
published in hard copy [353]. Today, the only reasonable medium is the more
flexible World Wide Web (WWW). Links can be followed and updated instantly.
LiMB contains information about the contents and details of maintenance of
databases related to molecular biology. It was created to facilitate the pro-
cess of locating and accessing data sets upon which the research community
depends.

The following sections contain lists of links to databases over databases,
to major public sequence databases, and to selected prediction servers. Real-
istically, these lists should be updated on a daily basis, and the goal has not
been to provide a nearly complete guide to the WWW. Rather, this material
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Figure 13.1: Some of the Databases Available over the World Wide Web.

should be seen as examples of the kinds of tools that can be useful for serious
analysis of experimental data. It is recommended that the metadatabases be
browsed regularly and that the common WWW search engines be used to spot
the most recent material. Most of the links listed below come from the page
started by Jan Hansen (http://www.cbs.dtu.dk/biolink.html) at the Center for
Biological Sequence Analysis in Denmark. The links indicated below focus on
sequence and annotation retrieval. Dedicated sites for sequence submission
have not been included.

13.3 Databases over Databases in Molecular Biology

SRS Sequence Retrieval System (network browser for databanks in molecular biology)
http://www.embl-heidelberg.de/srs5/
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Survey of Molecular Biology Databases and Servers
http://www.ai.sri.com/people/pkarp/mimbd/rsmith.html

BioMedNet Library
http://biomednet.com

DBGET Database Links
http://www.genome.ad.jp/dbget/dbget.links.html

Harvard Genome Research Databases and Selected Servers
http://golgi.harvard.edu

Johns Hopkins Univ. OWL Web Server
http://www.gdb.org/Dan/proteins/owl.html

Index of Biology Internet Servers, USGS
http://info.er.usgs.gov/network/science/biology/index.html

Listing of Molecular Biology Databases (LiMB)
gopher://gopher.nih.gov/11/molbio/other

WWW Server for Virology, UW-Madison
http://www.bocklabs.wisc.edu/Welcome.html

UK MRC Human Genome Mapping Project Resource Centre
http://www.hgmp.mrc.ac.uk/

WWW for the Molecular Biologists and Biochemists
http://www.yk.rim.or.jp/∼aisoai/index.html

Links to other Bio-Web servers
http://www.gdb.org/biolinks.html

Molecular Modelling Servers and Databases
http://www.rsc.org/lap/rsccom/dab/ind006links.htm

EMBO Practical Structural Databases
http://xray.bmc.uu.se/embo/structdb/links.html

Web Resources for Protein Scientists
http://www.faseb.org/protein/ProSciDocs/WWWResources.html

ExPASy Molecular Biology Server
http://expasy.hcuge.ch/cgi-bin/listdoc
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The Antibody Resource Page
http://www.antibodyresource.com

Bioinformatics WWW Sites
http://biochem.kaist.ac.kr/bioinformatics.html

Bioinformatics and Computational Biology at George Mason University
http://www.science.gmu.edu/∼michaels/Bioinformatics/

INFOBIOGEN Catalog of Databases
http://www.infobiogen.fr/services/dbcat/

National Biotechnology Information Facility
http://www.nbif.org/data/data.html

Human Genome Project Information
http://www.ornl.gov/TechResources/Human_Genome

Archives for biological software and databases
http://www.gdb.org/Dan/software/biol-links.html

Proteome Research: New Frontiers in Functional Genomics (book contents)
http://expasy.hcuge.ch/ch2d/LivreTOC.html

13.4 Sequence and Structure Databases

13.4.1 Major Public Sequence Databases

EMBL WWW Services
http://www.EMBL-heidelberg.de/Services/index.html

GenBank Database Query Form (get a GenBank entry)
http://ncbi.nlm.nih.gov/genbank/query_form.html

Protein Data Bank WWW Server (get a PDB structure)
http://www.rcsb.org

European Bioinformatics Institute (EBI)
http://www.ebi.ac.uk/

EBI Industry support
http://industry.ebi.ac.uk/
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SWISS-PROT (protein sequences)
http://www.expasy.ch/sprot/sprot-top.html

PROSITE (functional protein sites)
http://expasy.hcuge.ch/sprot/prosite.html

Macromolecular Structures Database
http://BioMedNet.com/cgi-bin/members1/shwtoc.pl?J:mms

Molecules R Us (search and view a protein molecule)
http://cmm.info.nih.gov/modeling/net_services.html

PIR-International Protein Sequence Database
http://www.gdb.org/Dan/proteins/pir.html

SCOP (structural classification of proteins), MRC
http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.1.html

HIV Sequence Database, Los Alamos
http://hiv-web.lanl.gov/

HIV Molecular Immunology Database, Los Alamos
http://hiv-web.lanl.gov/immuno/index.html

TIGR Database
http://www.tigr.org/tdb/tdb.html

The NCBI WWW Entrez Browser
http://www.ncbi.nlm.nih.gov/Entrez/index.html

Cambridge Structural Database (small-molecule organic and
organometallic crystal structures)
http://www.ccdc.cam.ac.uk

Gene Ontology Consortium
http://genome-www.stanford.edu/GO/

13.4.2 Specialized Databases

ANU Bioinformatics Hypermedia Server
(virus databases, classification and nomenclature of viruses)
http://life.anu.edu.au/
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O-GLYCBASE (a revised database of O-glycosylated proteins)
http://www.cbs.dtu.dk/OGLYCBASE/cbsoglycbase.html

Genome Sequence Database (GSDB) (relational database of annotated DNA sequences)
http://www.ncgr.org

EBI Protein topology atlas
http://www3.ebi.ac.uk/tops/ServerIntermed.html

Database of Enzymes and Metabolic Pathways (EMP)
http://www.empproject.com/

MAGPIE (multipurpose automated genome project investigation environment)
http://www.mcs.anl.gov/home/gaasterl/magpie.html

E.coli database collection (ECDC) (compilation of DNA sequences of E. coli K12)
http://susi.bio.uni-giessen.de/ecdc.html

Haemophilus influenzae database (HIDC) (genetic map, contigs, searchable index)
http://susi.bio.uni-giessen.de/hidc.htm

EcoCyc: Encyclopedia of Escherichia coli Genes and Metabolism
http://www.ai.sri.com/ecocyc/ecocyc.html

Eddy Lab snoRNA Database
http://rna.wustl.edu/snoRNAdb/

GenProtEc (genes and proteins of Escherichia coli)
http://www.mbl.edu/html/ecoli.html

NRSub (non-redundant database for Bacillus subtilis)
http://pbil.univ-lyon1.fr/nrsub/nrsub.html

YPD (proteins from Saccharomyces cerevisiae)
http://www.proteome.com/YPDhome.html

Saccharomyces Genome Database
http://genome-www.stanford.edu/Saccharomyces/

LISTA, LISTA-HOP and LISTA-HON (compilation of homology databases from yeast)
http://www.ch.embnet.org/

FlyBase (Drosophila database)
http://flybase.bio.indiana.edu/
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MPDB (molecular probe database)
http://www.biotech.ist.unige.it/interlab/mpdb.html

Compilation of tRNA sequences and sequences of tRNA genes
http://www.uni-bayreuth.de/departments/biochemie/trna/index.html

Small RNA database, Baylor College of Medicine
http://mbcr.bcm.tmc.edu/smallRNA/smallrna.html

SRPDB (signal recognition particle database)
http://psyche.uthct.edu/dbs/SRPDB/SRPDB.html

RDP (the Ribosomal Database Project)
http://rdpwww.life.uiuc.edu/

Structure of small ribosomal subunit RNA
http://rrna.uia.ac.be/ssu/index.html

Structure of large ribosomal subunit RNA
http://rrna.uia.ac.be/lsu/index.html

RNA modification database
http://medlib.med.utah.edu/RNAmods/

HAMSTeRS (haemophilia A mutation database) and factor VIII mutation database
http://europium.csc.mrc.ac.uk/usr/WWW/WebPages/main.dir/main.htm

Haemophilia B (point mutations and short additions and deletions)
ftp://ftp.ebi.ac.uk/pub/databases/haemb/

Human p53, hprt and lacZ genes and mutations
http://sunsite.unc.edu/dnam/mainpage.html

PAH mutation analysis (disease-producing human PAH loci)
http://www.mcgill.ca/pahdb

ESTHER (cholinesterase gene server)
http://www.ensam.inra.fr/cgi-bin/ace/index

IMGT (immunogenetics database)
http://www.ebi.ac.uk/imgt/

p53 mutations in human tumors and cell lines
ftp://ftp.ebi.ac.uk/pub/databases/p53/
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Androgen receptor gene mutations database
ftp://www.ebi.ac.uk/pub/databases/androgen/

Glucocorticoid receptor resource
http://nrr.georgetown.edu/GRR/GRR.html

Thyroid hormone receptor resource
http://xanadu.mgh.harvard.edu//receptor/trrfront.html

16SMDB and 23SMDB (16S and 23S ribosomal RNA mutation database)
http://www.fandm.edu/Departments/Biology/Databases/RNA.html

MITOMAP (human mitochondrial genome database)
http://www.gen.emory.edu/mitomap.html

SWISS-2DPAGE (database of two-dimensional polyacrylamide gel electrophoresis)
http://expasy.hcuge.ch/ch2d/ch2d-top.html

PRINTS (protein fingerprint database)
http://www.biochem.ucl.ac.uk/bsm/dbbrowser/PRINTS/PRINTS.html

KabatMan (database of antibody structure and sequence information)
http://www.bioinf.org.uk/abs/

ALIGN (compendium of protein sequence alignments)
http://www.biochem.ucl.ac.uk/bsm/dbbrowser/ALIGN/ALIGN.html

CATH (protein structure classification system)
http://www.biochem.ucl.ac.uk/bsm/cath/

ProDom (protein domain database)
http://protein.toulouse.inra.fr/

Blocks database (system for protein classification)
http://blocks.fhcrc.org/

HSSP (homology-derived secondary structure of proteins)
http://www.sander.embl-heidelberg.de/hssp/

FSSP (fold classification based on structure-structure alignment of proteins)
http://www2.ebi.ac.uk/dali/fssp/fssp.html

SBASE protein domains (annotated protein sequence segments)
http://www.icgeb.trieste.it/∼sbasesrv/
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TransTerm (database of translational signals)
http://uther.otago.ac.nz/Transterm.html

GRBase (database linking information on proteins involved in gene regulation)
http://www.access.digex.net/∼regulate/trevgrb.html

ENZYME (nomenclature of enzymes)
http://www.expasy.ch/enzyme/

REBASE (database of restriction enzymes and methylases)
http://www.neb.com/rebase/

RNaseP database
http://jwbrown.mbio.ncsu.edu/RNaseP/home.html

REGULONDB (database on transcriptional regulation in E. coli)
http://www.cifn.unam.mx/Computational_Biology/regulondb/

TRANSFAC (database on transcription factors and their DNA binding sites)
http://transfac.gbf.de/

MHCPEP (database of MHC-binding peptides)
http://wehih.wehi.edu.au/mhcpep/

Mouse genome database
http://www.informatics.jax.org/mgd.html

Mouse knockout database
http://BioMedNet.com/cgi-bin/mko/mkobrwse.pl

ATCC (American type culture collection)
http://www.atcc.org/

Histone sequence database of highly conserved nucleoprotein sequences
http://www.ncbi.nlm.nih.gov/Baxevani/HISTONES

3Dee (database of protein structure domain definitions)
http://barton.ebi.ac.uk/servers/3Dee.html

InterPro (integrated resource of protein domains and functional sites)
http://www.ebi.ac.uk/interpro/

NRL_3D (sequence-structure database derived from PDB, pictures and searches)
http://www.gdb.org/Dan/proteins/nrl3d.html
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VBASE human variable immunoglulin gene sequences
http://www.mrc-cpe.cam.ac.uk/imt-doc/public/INTRO.html

GPCRD (G protein-coupled receptor data)
http://www.gpcr.org/7tm/

Human Cytogenetics (chromosomes and karyotypes)
http://www.selu.com/bio/cyto/human/index.html

Protein Kinase resource
http://www.sdsc.edu/projects/Kinases/pkr/pk_info.html#Format

Carbohydrate databases
http://www.boc.chem.ruu.nl/sugabase/databases.html

Borrelia Molecular Biology Home Page
http://www.pasteur.fr/Bio/borrelia/Welcome.html

Human papillomaviruses database
http://HPV-web.lanl.gov/

Human 2-D PAGE databases for proteome analysis in health and disease
http://biobase.dk/cgi-bin/celis

DBA mammalian genome size database
http://www.unipv.it/∼webbio/dbagsh.htm

DOGS database Of Genome Sizes
http://www.cbs.dtu.dk/databases/DOGS/index.html

U.S. patent citation database
http://cos.gdb.org/repos/pat/

13.5 Sequence Similarity Searches

Sequence similarity search page at EBI
http://www.ebi.ac.uk/searches/searches.html

NCBI: BLAST notebook
http://www.ncbi.nlm.nih.gov/BLAST/

BLITZ ULTRA Fast Search at EMBL
http://www.ebi.ac.uk/searches/blitz_input.html
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EMBL WWW services
http://www.embl-heidelberg.de/Services/index.html#5

Pattern scan of proteins or nucleotides
http://www.mcs.anl.gov/compbio/PatScan/HTML/patscan.html

MEME (motif discovery and search)
http://meme.sdsc.edu/meme/website/

CoreSearch (dentification of consensus elements in DNA sequences)
http://www.gsf.de/biodv/coresearch.html

The PRINTS/PROSITE scanner (search motif databases with query sequence)
http://www.biochem.ucl.ac.uk/cgi-bin/attwood/SearchPrintsForm.pl

DARWIN system at ETH Zurich
http://cbrg.inf.ethz.ch/

PimaII find sequence similarity using dynamic programming
http://bmerc-www.bu.edu/protein-seq/pimaII-new.html

DashPat find sequence similarity using a hashcode comparison with a pattern library
http://bmerc-www.bu.edu/protein-seq/dashPat-new.html

PROPSEARCH (search based on amino acid composition, EMBL)
http://www.embl-heidelberg.de/aaa.html

Sequence search protocol (integrated pattern search)
http://www.biochem.ucl.ac.uk/bsm/dbbrowser/protocol.html

ProtoMap (automatic hierarchical classification of all swissprot proteins)
http://www.protomap.cs.huji.ac.il/

GenQuest (Fasta, Blast, Smith Waterman; search in any database)
http://www.gdb.org/Dan/gq/gq.form.html

SSearch (searches against a specified database)
http://watson.genes.nig.ac.jp/homology/ssearch-e_help.html

Peer Bork search list (motif/pattern/profile searches)
http://www.embl-heidelberg.de/∼bork/pattern.html

PROSITE Database Searches (search for functional sites in your sequence)
http://www.ebi.ac.uk/searches/prosite.html
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PROWL—Protein Information Retrieval at Skirball Institute
http://mcphar04.med.nyu.edu/index.html

CEPH genotype database
http://www.cephb.fr/cephdb/

13.6 Alignment

13.6.1 Pairwise Sequence and Structure Alignment

Pairwise protein alignment (SIM)
http://expasy.hcuge.ch/sprot/sim-prot.html

LALNVIEW alignment viewer program
ftp://expasy.hcuge.ch/pub/lalnview

BCM Search Launcher (pairwise sequence alignment)
http://searchlauncher.bcm.tmc.edu/seq-search/alignment.html

DALI compare protein structures in 3D
http://www2.ebi.ac.uk/dali/

DIALIGN (aligment program without explicit gap penalties)
http://www.gsf.de/biodv/dialign.html

13.6.2 Multiple Alignment and Phylogeny

ClustalW (multiple sequence alignment at BCM)
http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html

PHYLIP (programs for inferring phylogenies)
http://evolution.genetics.washington.edu/phylip.html

Other phylogeny programs, a complication from PHYLIP documentation
http://expasy.hcuge.ch/info/phylogen.sof

Tree of Life Home Page (information about phylogeny and biodiversity)
http://phylogeny.arizona.edu/tree/phylogeny.html

Links for Palaeobotanists
http://www.uni-wuerzburg.de/mineralogie/palbot1.html
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Phylogenetic analysis programs (the tree of life list)
http://phylogeny.arizona.edu/tree/programs/programs.html

Cladistics
http://www.kheper.auz.com/gaia/biosphere/systematics/cladistics.htm

Cladistic software (a list from the Willi Hennig Society)
http://www.cladistics.org/education.html

BCM search launcher for multiple sequence alignments
http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html

AMAS (analyse multiply aligned sequences)
http://barton.ebi.ac.uk/servers/amas_server.html

Vienna RNA Secondary Structure Package
http://www.tbi.univie.ac.at/∼ivo/RNA/

WebLogo (sequence logo)
http://www.bio.cam.ac.uk/cgi-bin/seqlogo/logo.cgi

Protein sequence logos using relative entropy
http://www.cbs.dtu.dk/gorodkin/appl/plogo.html

RNA structure-sequence logo
http://www.cbs.dtu.dk/gorodkin/appl/slogo.html

RNA mutual information plots
http://www/gorodkin/appl/MatrixPlot/mutRNA/

13.7 Selected Prediction Servers

13.7.1 Prediction of Protein Structure from Sequence

PHD PredictProtein server for secondary structure, solvent accesibility,
and transmembrane segments
http://www.embl-heidelberg.de/predictprotein/predictprotein.html

PhdThreader (fold recognition by prediction-based threading)
http://www.embl-heidelberg.de/predictprotein/phd_help.html

PSIpred (protein strcuture prediction server)
http://insulin.brunel.ac.uk/psipred/
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THREADER (David Jones)
http://www.biochem.ucl.ac.uk/∼jones/threader.html

TMHMM (prediction of transmembrane helices in proteins)
http://wwwcbs.dtu.dk/services/TMHMM/

Protein structural analysis, BMERC
http://bmerc-www.bu.edu/protein-seq/protein-struct.html

Submission form for protein domain and foldclass prediction
http://genome.dkfz-heidelberg.de/nnga/def-query.html

NNSSP (prediction of protein secondary sturcture by nearest-neighbor algorithms)
http://genomic.sanger.ac.uk/pss/pss.html

Swiss-Model (automated knowledge-based protein homology modeling server)
http://www.expasy.ch/swissmod/SWISS-MODEL.html

SSPRED (secondary structure prediction with multiple alignment)
http://www.mrc-cpe.cam.ac.uk/jong/predict/sspred.htm

SSCP (secondary structure prediction content with amino acid composition)
http://www.mrc-cpe.cam.ac.uk/jong/predict/sscp.htm

SOPM (Self Optimized Prediction Method, secondary structure) at IBCP, France.
http://pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopm.html

NNPREDICT (neural network for residue-by-residue prediction)
http://www.cmpharm.ucsf.edu/∼nomi/nnpredict.html

SSpro (secondary structure in 3 classes)
http://promoter.ics.uci.edu/BRNN-PRED/

SSpro8 (secondary structure in 8 classes)
http://promoter.ics.uci.edu/BRNN-PRED/

ACCpro (solvent accessibility)
http://promoter.ics.uci.edu/BRNN-PRED/

CONpro (contact number)
http://promoter.ics.uci.edu/BRNN-PRED/

TMAP (service predicting transmembrane segments in proteins)
http://www.embl-heidelberg.de/tmap/tmap_info.html
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TMpred (prediction of transmembrane regions and orientation)
http://www.ch.embnet.org/software/TMPRED_form.html

MultPredict (secondary structure of multiply aligned sequences)
http://kestrel.ludwig.ucl.ac.uk/zpred.html

NIH Molecular Modeling Homepage (modelling homepage with links)
http://cmm.info.nih.gov/modeling/

BCM Search Launcher (protein secondary structure prediction)
http://searchlauncher.bcm.tmc.edu/seq-search/struc-predict.html

COILS (prediction of coiled coil regions in proteins)
http://www.ch.embnet.org/software/coils/COILS_doc.html

Coiled Coils
http://www.york.ac.uk/depts/biol/units/coils/coilcoil.html

Paircoil (location of coiled coil regions in amino acid sequences)
http://theory.lcs.mit.edu/ bab/webcoil.html

PREDATOR (protein secondary structure prediction from single sequence)
http://www.embl-heidelberg.de/argos/predator/predator_info.html

DAS (Dense Alignment Surface; prediction of transmembrane regions in proteins)
http://www.biokemi.su.se/∼server/DAS/

Fold-recognition at UCLA-DOE structure prediction server
http://www.doe-mbi.ucla.edu/people/frsvr/frsvr.html

Molecular Modelling Servers and Databases
http://bionmr5.bham.ac.uk/modelling/model.html

EVA (automatic evaluation of protein structure prediction servers)
http://cubic.bioc.columbia.edu/eva/

13.7.2 Gene Finding and Intron Splice Site Prediction

NetGene (prediction of intron splice sites in human genes)
http://www.cbs.dtu.dk/services/NetGene2/

NetPlantGene (prediction of intron splice sites in Arabidopsis thaliana)
http://www.cbs.dtu.dk/services/NetPGene
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GeneQuiz (automated analysis of genomes)
http://www.sander.embl-heidelberg.de/genequiz/

GRAIL interface (protein coding regions and functional sites)
http://avalon.epm.ornl.gov/Grail-bin/EmptyGrailForm

GENEMARK (WWW system for predicting protein coding regions)
http://genemark.biology.gatech.edu/GeneMark

GENSCAN Web Server: Complete gene structures in genomic DNA
http://gnomic.stanford.edu/∼chris/GENSCANW.html

FGENEH Genefinder: Prediction of gene structure in human DNA sequences
http://mbcr.bcm.tmc.edu/Guide/Genefinder/fgeneh.html

GRAIL and GENQUEST (E-mail sequence analysis, gene assembly,
and sequence comparison)
http://avalon.epm.ornl.gov/manuals/grail-genquest.9407.html

CpG islands finder
http://www.ebi.ac.uk/cpg/

Eukaryotic Pol II promoter prediction
http://biosci.umn.edu/software/proscan.html

Promoter prediction input form
http://www-hgc.lbl.gov/projects/promoter.html

Web Signal Scan Service (scan DNA sequences for eukaryotic transcriptional elements)
http://bimas.dcrt.nih.gov/molbio/signal/

Gene Discovery Page
http://konops.imbb.forth.gr/∼topalis/mirror/gdp.html

List of genome sequencing projects
http://www.mcs.anl.gov/home/gaasterl/genomes.html

13.7.3 DNA Microarray Data and Methods

Cyber-T (DNA microarray data analysis server)
http://128.200.5.223/CyberT/

Brown Lab guide to microarraying
http://cmgm.stanford.edu/pbrown
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Stanford Microarray Database
http://genome-www4.stanford.edu/MicroArray/SMD/

Stanford MicroArray Forum
http://cmgm.stanford.edu/cgi-bin/cgiwrap/taebshin/dcforum/dcboard.cgi

Brazma microarray page at EBI
http://industry.ebi.ac.uk/∼brazma/Data-mining/microarray.html

Web resources on gene expression and DNA microarray technologies
http://industry.ebi.ac.uk/∼alan/MicroArray/

Gene-X (array data management and analysis system)
http://www.ncgr.org/research/genex/

UCI functional genomics array tools and software
http://www.genomics.uci.edu/

Matern’s DNA Microarray Page
http://barinth.tripod.com/chips.html

Public source for microarraying information, tools, and protocols
http://www.microarrays.org/

Weisshaar’s listing of DNA microarray links
http://www.mpiz-koeln.mpg.de/∼weisshaa/Adis/DNA-array-links.html

DNA microarray technology to identify genes controlling spermatogenesis
http://www.mcb.arizona.edu/wardlab/microarray.html

13.7.4 Other Prediction Servers

NetStart (translation start in vertebrate and A. thaliana DNA)
http://www.cbs.dtu.dk/services/NetStart/

NetOGlyc (O-glycosylation sites in mammalian proteins)
http://www.cbs.dtu.dk/services/NetOGlyc/

YinOYang (O-β-GlcNAc sites in eukaryotic protein sequences)
http://www.cbs.dtu.dk/services/YinOYang/

SignalP
(signal peptide and cleavage sites in gram+, gram-, and eukaryotic proteins)
http://www.cbs.dtu.dk/services/SignalP/
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NetChop (cleavage sites of the human proteasome)
http://www.cbs.dtu.dk/services/NetChop/

NetPhos (serine, threonine and tyrosine phosphorylation sites in eukaryotic proteins)
http://www.cbs.dtu.dk/services/NetPhos/

TargetP (prediction of subcellular location)
http://www.cbs.dtu.dk/services/TargetP/

ChloroP (chloroplast pransit peptide prediction)
http://www.cbs.dtu.dk/services/SignalP/

PSORT (prediction of protein-sorting signals and localization from sequence)
http://psort.nibb.ac.jp/

PEDANT (prtein extraction, description, and analalysis tool)
http://pedant.mips.biochem.mpg.de/

Compare your sequence to COG database
http://www.ncbi.nlm.nih.gov/COG/cognitor.html

Prediction of HLA-binding peptides from sequences
http://www-bimas.dcrt.nih.gov/molbio/hla_bind/index.html

13.8 Molecular Biology Software Links

Visualization for bioinformatics
http://industry.ebi.ac.uk/ alan/VisSupp/

The EBI molecular biology software archive
http://www.ebi.ac.uk/software/software.html

The BioCatalog
http://www.ebi.ac.uk/biocat/e-mail_Server_ANALYSIS.html

Archives for biological software and databases
http://www.gdb.org/Dan/softsearch/biol-links.html

Barton group software (ALSCRIPT, AMPS, AMAS, STAMP, ASSP, JNET, and SCANPS)
http://barton.ebi.ac.uk/new/software.html
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Cohen group software rotamer library, BLoop, QPack, FOLD, Match,
http://www.cmpharm.ucsf.edu/cohen/pub/

Bayesian bioinformatics at Wadsworth Center
http://www.wadsworth.org/res&res/bioinfo/

Rasmol software and script documentation
http://scop.mrc-lmb.cam.ac.uk/std/rs/

MolScript
http://ind1.mrc-lmb.cam.ac.uk/external-file-copies/molscript.html

WHAT IF
http://www.hgmp.mrc.ac.uk/Registered/Option/whatif.html

Biosym (Discover)
http://ind1.mrc-lmb.cam.ac.uk/external-file-copies/biosym/

discover/html/Disco_Home.html

SAM software for sequence consensus HMMs at UC Santa Cruz
http://www.cse.ucsc.edu/research/compbio/sam.html

HMMER (source code for hidden Markov model software)
http://hmmer.wustl.edu/

ClustalW
http://www.ebi.ac.uk/clustalw/

DSSP program
http://www.sander.embl-heidelberg.de/dssp/

Bootscanning for viral recombinations
http://www.bio.net//hypermail/RECOMBINATION/recom.199607/0004.html

Blocking Gibbs sampling for linkage analysis in very large pedigrees
http://www.cs.auc.dk/∼claus/block.html

ProMSED (protein multiple sequences editor for Windows)
ftp://ftp.ebi.ac.uk/pub/software/dos/promsed/

DBWatcher for Sun/Solaris
http://www-igbmc.u-strasbg.fr/BioInfo/LocalDoc/DBWatcher/
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ProFit (protein least squares fitting software)
http://www.bioinf.org.uk/software/

Indiana University IUBIO software and data
http://iubio.bio.indiana.edu/

Molecular biology software list at NIH
http://bimas.dcrt.nih.gov/sw.html

ProAnalyst software for protein/peptide analysis
ftp://ftp.ebi.ac.uk/pub/software/dos/proanalyst/

DRAGON protein modelling tool using distance geometry
http://www.nimr.mrc.ac.uk/∼mathbio/a-aszodi/dragon.html

Molecular Surface Package
http://www.best.com/∼connolly/

Biotechnological Software and Internet Journal
http://www.orst.edu/∼ahernk/bsj.html

MCell (Monte Carlo simulator of cellular microphysiology)
http://www.mcell.cnl.salk.edu/

HHMpro (HMM simulator for sequence analysis with graphical interface)
http://www.netid.com/html/hmmpro.html

13.9 Ph.D. Courses over the Internet

Biocomputing course resource list: course syllabi
http://www.techfak.uni-bielefeld.de/bcd/Curric/syllabi.html

Ph.D. course in biological sequence analysis and protein modeling
http://www.cbs.dtu.dk/phdcourse/programme.html

The Virtual School of Molecular Sciences
http://www.ccc.nottingham.ac.uk/vsms/sbdd/

EMBnet Biocomputing Tutorials
http://biobase.dk/Embnetut/Universl/embnettu.html
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Collaborative course in protein structure
http://www.cryst.bbk.ac.uk/PPS/index.html

GNA’s Virtual School of Natural Sciences
http://www.techfak.uni-bielefeld.de/bcd/Vsns/index.html

Algorithms in molecular biology
http://www.cs.washington.edu/education/courses/590bi/

ISCB education working group
http://www.sdsc.edu/pb/iscb/iscb-edu.html

13.10 Bioinformatics Societies

International Society for Computational Biology (ISCB)
http://www.iscb.org/

Society for Bioinformatics in the Nordic countries
http://www.socbin.org/

Japanese Society for Bioinformatics
http://www.jsbi.org/

13.11 HMM/NN simulator

A number of projects described in the book have been carried using the ma-
chine learning software environment for biological sequence analysis devel-
oped in collaboration by Net-ID, Inc. and employees at the Danish Center for
Biological Sequence Analysis in Copenhagen.

The foundation for the software environment is based on NetLibs, an
object-oriented library of C++ classes for graphical modeling, machine learn-
ing, and inference developed by Net-ID. The library supports the hierarchical
and recursive implementation of any graphical model (NNs, HMMs, Bayesian
Networks, etc.) together with general local message-passing algorithms for the
propagation of information, errors, and evidence during inferential/learning
processes and dynamic programming.

Net-Libs provides, among other things, the foundation, for an HMM simu-
lator and an NN simulator for biological sequence analysis. The easy-to-use
graphical interface for both simulators is in Java. The software environment
runs both under Unix and NT platforms.
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In addition, the software environment contains facilities for manipulating
input/output sequences, databases, and files, as well as libraries of trained
models. The libraries include HMMs for a number of protein families and DNA
elements (promoters, splice sites, exons, etc.) and a number of NNs for the
detection of particular structural or functional signals, both in protein and
DNA sequences.

For more information please contact: admin@netid.com.
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Appendix A

Statistics

A.1 Decision Theory and Loss Functions

In any decision problem [238, 63, 431], one is led to define a loss function (or
equivalently a reward function) to measure the effect of one’s action on a given
state of the environment. The fundamental theorem of decision theory is that
under a small set of sensible axioms used to describe rational behavior, the op-
timal strategy is the one that minimizes the expected loss, where expectation
is defined with respect to a Bayesian probabilistic analysis of the uncertain
environment, given the available knowledge. Note that several of the tasks
undertaken in purely scientific data analysis endeavors—such as data com-
pression, reconstruction, or clustering—are decision-theoretic in nature and
therefore require the definition of a loss function. Even prediction falls into
this category, and this is why in regression, E(y|x) is the best predictor of y
given x, when the loss is quadratic (see below).

When one of the goals is to pick the “best” model, as is often the case
throughout this book, the expected loss function is equal to the negative log-
likelihood (or log-prior). But in general the two functions are distinct. In prin-
ciple, for instance, one could even have Gaussian data with quadratic negative
log-likelihood, but use a quartic loss function.

Two loss functions f1 and f2 can be equivalent in terms of minimization
properties. This is the case if there is an order-preserving transformation g
(if u ≤ v, then g(u) ≤ g(v)) such that f2 = gf1. Then f1 and f2 have the
same minima. This of course does not imply that minimization (i.e., learning)
algorithms applied to f1 or f2 behave in the same way, nor that f1 and f2 have
the same curvature around their minima. As briefly mentioned in chapter 5, a
good example is provided by the quadratic function f1(y) =

∑K
1 (pi − yi)2/2

and the cross-entropic function f2(y) = −
∑K

1 pi logyi, when
∑
pi = 1. Both
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functions are convex in y , and have a unique global minimum at yi = pi,
provided f2 is restricted to

∑
yi = 1. In fact, by Taylor-expanding f2 around

pi, we have

f2(y) = −
K∑
1

pi log(pi + εi) ≈H (p) +
K∑
1

ε2
i

2pi
(A.1)

with yi = pi + εi and
∑
εi = 0. Therefore, when pi = 1/K is uniform, one has

the even stronger result that f2 ≈ H (p)+Kf1. Therefore, apart from constant
terms, the quadratic and cross-entropy loss f1 and f2 coincide around the
same optimum and have the same curvature. In the rest of this appendix,
we concentrate on the most common quadratic loss functions (or Gaussian
likelihoods), but many of the results can be extended to other loss functions,
using the remarks above.

A.2 Quadratic Loss Functions

A.2.1 Fundamental Decomposition

To begin, consider a sequence of numbers y1, . . . , yK and the quadratic form
f(y) = ∑K

1 (y − yi)2/K, that is the average square loss. Then f has a unique
minimum at the average y∗ = E(y) = ∑K

1 yi/K. This is easily seen by using
Jensen’s inequality (appendix B), or more directly by writing

f(y) = 1
K

K∑
1

(y − y∗ +y∗ −yi)2

= (y −y∗)2 + 1
K

K∑
1

(y∗ −yi)2 + 2
K

K∑
1

(y −y∗)(y∗ −yi)

= (y −y∗)2 + 1
K

K∑
1

(y∗ −yi)2 ≥ f(y∗). (A.2)

Thus f can be decomposed into the sum of the bias (y−y∗)2 and the variance∑K
1 (y∗ − yi)2. The bias measures the distance from y to the optimum aver-

age, and the variance measures the dispersion of the yis around the average.
This decomposition of quadratic loss functions into the sum of two quadratic
terms (Pythagoras’ theorem) with the cancellation of any cross-product terms
is essential, and will be used repeatedly below in slightly different forms.
The above result remains true if the yi occur with different frequencies or
strengths pi ≥ 0, with

∑
pi = 1. The expected quadratic loss is again mini-

mized by the the weighted average y∗ = E(y) = ∑piyi with the decomposi-
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tion

E
[
(y −yi)2

]
=

K∑
1

pi(y −yi)2 = (y −y∗)2 +
K∑
1

pi(y∗ − yi)2. (A.3)

We now show how this simple decomposition can be applied to regression
problems, and in several directions, by using slightly different expectation op-
erators, including averaging over different training sets or different estimators.

A.2.2 Application to Regression

Consider a regression problem in which we are trying to estimate a target
function f(x) and in which the x,y data are characterized by a distribution
P(x,y). For simplicity, as in chapter 5, we shall assume that as a result of
“noise,” different possible values ofy can be observed for any single x. For any
x, the expected error or loss E[(y−f(x))2|x] is minimized by the conditional
expectations y∗ = E(y|x), where now all expectations are taken with respect
to the distribution P , or approximated from corresponding samples. Again
this is easily seen by writing

E
[
(y − f(x))2|x

]
= E

[
(y − E(y|x)+ E(y|x)− f(x))2|x

]
(A.4)

and expanding the square. The cross-product term disappears, leaving the
bias/variance decomposition

E
[
(y − f(x))2|x

]
= [E(y|x)− f(x)]2 + E

[
(y − E(y|x))2|x

]
. (A.5)

A.3 The Bias/Variance Trade-off

Consider the same regression framework as above, but where different training
sets D are available. For each training set D, the learning algorithm produces
a different estimate f(x,D). The performance of such an estimator can be
measured by the expected loss E[(y − f(x,D))2|x,D], the expectation again
being with respect to the distribution P . The usual calculation shows that

E
[
(y − f(x,D))2|x,D

]
=

[
f(x,D)− E(y|x)]2 + E

[
(y − E(y|x))2|x,D

]
. (A.6)

The variance term does not depend on the training sample D. Thus, for any x,
the effectiveness of the estimator f(x,D) is measured by the bias [f(x,D) −
E(y|x)]2, that is, by how it deviates from the optimal predictor E(y|x). We
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can now look at the average of such error over all training sets D of a given
size. Again writing

ED
[
(f(x,D)− E(y|x))2

]
=

ED
[
(f(x,D) − ED(f(x,D))+ ED(f(x,D))− E(y|x))2

]
, (A.7)

cancellation of the cross-product term leaves the bias-variance decomposition

ED
[
(f(x,D)− E(y|x))2

]
=

[
ED(f(x,D))− E(y|x)]2 + ED

[
(f(x,D) − ED(f(x,D)))2

]
. (A.8)

The bias/variance decomposition corresponds to a sort of uncertainty prin-
ciple in machine learning: it is always difficult to try to decrease one of the
terms without increasing the other. This is also the basic trade-off between
underfitting and overfitting the data. A flexible machine with a large num-
ber of parameters that can cover a large functional space typically achieves a
small bias. The machine, however, must be sensitive to the data and therefore
the variance associated with overfitting the data tends to be large. A simple
machine has typically a smaller variance, but the price to pay is a larger under-
fitting bias.

A.4 Combining Estimators

As mentioned in chapter 4, it can be useful at times to combine different es-
timators f(x,w), using a discrete (or even continuous) distribution pw ≥ 0,
(
∑
w pw = 1) over parameters w associated with each estimator. As in (A.8),

the different estimators could, for example, correspond to different training
sets. By taking expectations with respect to w, (A.8) can be generalized imme-
diately to

Ew
[
(f(x,w)− E(y|x))2

]
=

[
Ew(f(x,w) − E(y|x))]2 + Ew

[
(f(x,w)− Ew(f(x,w)))2

]
. (A.9)

Thus the loss for the weighted average predictor f∗(x) = Ew(f(x,w)), some-
times also called ensemble average, is always less than the average loss:

Ew
[
(f(x,w)− E(y|x))2

]
≥ [f∗(x)− E(y|x)]2 . (A.10)
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In fact, we can average (A.9) over all possible xs, using the distribution P to
obtain “generalization” errors:

EX
[
f∗(x)− E(y|x)]2 =

EXEw
[
(f(x,w)− E(y|x))2

]
− EXEw

[
(f(x,w) − f∗(x))2

]
. (A.11)

This is the relation used in [340, 339]. The left-hand term is the expected
loss of the ensemble. The first term on the right-hand side is the expected
loss across estimators, and the second term is called the ambiguity. Clearly,
combining identical estimators is useless. Thus a necessary condition for the
ensemble approach to be useful is that the individual estimators have a sub-
stantial level of disagreement. All else equal, the ambiguity should be large.
One way to achieve this is to use different training sets for each estimator (see
[340], where algorithms for obtaining optimal weighting schemes pw—for in-
stance, by quadratic programming—are also discussed). One important point
is that all the correlations between estimators are contained in the ambiguity
term. The ambiguity term does not depend on any target values, and therefore
can be estimated from unlabeled data.

A.5 Error Bars

For illustration, consider a modeling situation with one parameter w, and a
uniform prior. Let f(w) = − log P(D|w) be the negative log-likelihood of the
data. Under mild differentiability conditions, a maximum likelihood estima-
tor w∗ satisfies f ′(w∗) = 0. Therefore, in the neighborhood of w∗, we can
expand f(w∗) in a Taylor series:

f(w) ≈ f(w∗)+ 1
2
f ′′(w∗)(w −w∗)2 (A.12)

or

P(D|w) = e−f(w) ≈ Ce− 1
2f

′′(w∗)(w−w∗)2 , (A.13)

where C = e−f(w∗). Thus the likelihood and the posterior P(w|M) locally

behave like a Gaussian, with a standard deviation 1/
√
f ′′(w∗), associated with

the curvature of f . In the multidimensional case, the matrix of second-order
partial derivatives is called the Hessian. Thus the Hessian of the log-likelihood
has a geometric interpretation and plays an important role in a number of
different questions. It is also called the Fisher information matrix (see also
[5, 16, 373]).
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A.6 Sufficient Statistics

Many statistical problems can be simplified through the use of sufficient statis-
tics. A sufficient statistic for a parameter w is a function of the data that
summarize all the available information about w. More formally, consider a
random variable X with a distribution parameterized by w. A function S of X
is a sufficient statistic forw if the conditional distribution P(X = x|S(X) = s)
is independent of w with probability 1. Thus P(X = x|S(X) = s) does not vary
with w, or

P(X = x|S = s,w) = P(X = x|S = s). (A.14)

This equality remains true if we replace X by any statistics H = h(X). Equiva-
lently, this equality yields P(w|X,S) = P(w|S). All information aboutw is con-
veyed by S, and any other statistic is redundant. In particular, sufficient statis-
tics preserve the mutual information I (see appendix B): I(w,X) = I(w, S(X)).

As an example, consider a sample X = (X1, . . . , XN) drawn from a random
variable N (µ,σ2), so that w = (µ,σ). Then (m, s) is a sufficient statistic for
w, with m = ∑i Xi/N and s2 = ∑i(Xi −m)2/(N − 1). In other words, all the
information about µ contained in the sample is contained in the sample mean
m, and similarly for the variance.

A.7 Exponential Family

The exponential family [94] is the most important family of probability distri-
butions. It has a wide range of applications and unique computational prop-
erties: many fast algorithms for data analysis have some version of the expo-
nential family at their core. Many general theorems in statistics can be proved
for this particular family of parameterized distributions. The density in the
one-parameter exponential family has the form

P(x|w) = c(w)h(x)eq(w)S(x). (A.15)

Most common distributions belong to the exponential family, including the
normal (with either mean or variance fixed), chi square, binomial and multino-
mial, geometric and negative binomial, exponential and gamma, beta, Poisson,
and Dirichlet distributions. All the distributions used in this book are in the
exponential family. Among the important general properties of the exponen-
tial family is the fact that a random sample from a distribution in the one-
parameter exponential family always has a sufficient statistic S. Furthermore,
the sufficient statistic itself has a distribution that belongs to the exponential
family.
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A.8 Additional Useful Distributions

Here we briefly review three additional continuous distributions used in chap-
ter 12.

A.8.1 The Scaled Inverse Gamma Distribution

The scaled inverse gamma distribution I(x;ν, s2) with ν > 0 degrees of free-
dom and scale s > 0 is given by:

(ν/2)ν/2

Γ(ν/2)
sνx−(ν/2+1)e−νs

2/(2x) (A.16)

for x > 0. The expectation is (ν/ν − 2)s2 when ν > 2, otherwise it is infinite.
The mode is always (ν/ν + 2)s2.

A.8.2 The Student Distribution

The Student-t distribution t(x;ν,m,σ2) with ν > 0 degrees of freedom, loca-
tion m and scale σ > 0 is given by:

Γ((ν + 1)/2)
Γ(ν/2)

√
νπσ

(1+ 1
ν
(
x −m
σ

)2)−(ν+1)/2 . (A.17)

The mean and the mode are equal to m.

A.8.3 The Inverse Wishart Distribution

The inverse Wishart distribution I(W ;ν, S−1), where ν represents the degrees
of freedom and S is a k× k symmetric, positive definite scale matrix, is given
by

(2νk/2πk(k−1)/4
k∏
i=1

Γ(
ν + 1− i

2
))−1|S|ν/2|W|−(ν+k+1)/2

exp(−1
2
tr(SW−1)) (A.18)

where W is also positive definite. The expectation of W is E(W) = (ν − k −
1)−1S.
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A.9 Variational Methods

To understand this section one must be familiar with the notion of relative
entropy (appendix B) . In the Bayesian framework, we are often faced with
high–dimensional probability distributions P(x) = P(x1, ..., xn) that are in-
tractable, in the sense that they are too complex to be estimated exactly. The
basic idea in variational methods is to approximate P(x) by constructing a
tractable family Q(x,θ) of distributions parameterized by the vector θ and
choosing the element in the family closest to P . This requires a way of mea-
suring distances between probability distributions. In variational methods this
is generally done using the relative entropy or KL distance H (Q, P). Thus we
try to minimize

H (Q, P) =
∑
Q log

Q
P
= −H (Q) + EQ(− logP). (A.19)

When P is represented as a Boltzmann–Gibbs distribution P = e−λE/Z(λ), then

H (Q, P) = −H (Q) + λEQ(E)+ logZ(λ) = λF + logZ(λ) (A.20)

where F is the free energy defined in chapter 3. Since the partition function
Z does not depend on θ, minimizing H is equivalent to minimizing F . From
Jensen’s inequality in appendix B, we know that, for any approximating Q,
H ≥ 0 or, equivalently, F ≥ − logZ(λ)/λ. Equality at the optimum can be
achieved only if Q∗ = P .

In modeling situations we often have a family of models parameterized
by w and P is the posterior P(w|D). Using Bayes’ theorem and the equation
above, we then have

H (Q, P) = −H (Q) + EQ[− log P(D|w)− log P(w)] + log P(D) (A.21)

with λ = 1 and E = − log P(D|w) − log P(w). Again, the approximating distri-
butions must satisfy H ≥ 0 or F ≥ − log P(D).

In a sense, variational methods are close to higher levels of Bayesian infer-
ence since they attempt to approximate the entire distribution P(w|D) rather
than focusing on its mode, as in MAP estimation. At an even higher level, we
could look at a distribution over the space Q rather than its optimum Q∗. We
leave as an exercise for the reader to study further the position of variational
methods within the Bayesian framework and to ask, for instance, whether vari-
ational methods themselves can be seen as a form of MAP estimation.

But the fundamental problem in the variational approach is of course the
choice of the approximating family Q(x,θ) or Q(w,θ). The family must sat-
isfy two conflicting requirements: it must be simple enough to be computa-
tionally tractable, but not too simple or else the distance H (Q, P) remains
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too large. By computationally tractable we mean that one ought to be able to
estimate, for instance, F and ∂F/∂θ. A simple case is when the family Q is
factorial. Q is a factorial distribution if and only if it has the functional form
Q(x1, . . . , xn) = Q(x1) . . .Q(xn). Mean field theory in statistical mechanics
is a special case of variational method with factorial approximation (see also
[582]). More generally, the construction of a suitable approximating family Q
is problem–dependent and remains an art more than a science. In constructing
Q, however, it is often useful to use:

• Mixture distributions

• Exponential distributions

• Independence assumptions and the corresponding factorizations (ap-
pendix C).

For instance, Q can be written as a mixture of factorial distributions, where
each factor belongs to the exponential family. The parameters to be optimized
can then be the mixture coefficients and/or the parameters (mean, variance) of
each exponential member.
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Appendix B

Information Theory, Entropy,
and Relative Entropy

Here we briefly review the most basic concepts of information theory used in
this book and in many other machine learning applications. For more in-depth
treatments, the reader should consult [483], [71], [137], and [577]. The three
most basic concepts and measures of information are the entropy, the mutual
information, and the relative entropy. These concepts are essential for the
study of how information is transformed through a variety of operations such
as information coding, transmission, and compression. The relative entropy is
the most general concept, from which the other two can be derived. As in most
presentations of information theory, we begin here with the slightly simpler
concept of entropy.

B.1 Entropy

The entropy H (P) of a probability distribution P = (p1, . . . , pn) is defined by

H (P) = E(− logP) = −
n∑
i=1

pi logpi. (B.1)

The units used to measure entropy depend on the base used for the loga-
rithms. When the base is 2, the entropy is measured in bits. The entropy
measures the prior uncertainty in the outcome of a random experiment de-
scribed by P , or the information gained when the outcome is observed. It is
also the minimum average number of bits (when the logarithms are taken base
2) needed to transmit the outcome in the absence of noise.
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The concept of entropy can be derived axiomatically. Indeed, consider a
random variable X that can assume the values x1, . . . , xn with probabilities
p1, . . . , pn. The goal is to define a quantity H (P) = H (X) = H (p1, . . . , pn)
that measures, in a unique way, the amount of uncertainty represented in
this distribution. It is a remarkable fact that three commonsense axioms, re-
ally amounting to only one composition law, are sufficient to determine H
uniquely, up to a constant factor corresponding to a choice of scale. The three
axioms are as follows:

1. H is a continuous function of the pi.

2. If all pis are equal, then H (P) = H (n) = H (1/n, . . . ,1/n) is a mono-
tonic increasing function of n.

3. Composition law: Group all the events xi into k disjoint classes. Let Ai
represent the indices of the events associated with the ith class, so that
qi =

∑
j∈Ai pj represents the corresponding probability. Then

H (P) = H (Q) +
k∑
i=1

qiH
(
P̄i
qi

)
, (B.2)

where P̄i denotes the set of probabilities pj for j ∈ Ai. Thus, for example,
the composition law states that by grouping the first two events into one,

H (1/3,1/6,1/2) =H (1/2,1/2)+ 1
2
H (2/3,1/3). (B.3)

From the first condition, it is sufficient to determine H for all rational cases
where pi = ni/n, i = 1, . . . , n. But from the second and third conditions,

H (
n∑
i=1

ni) = H (p1, . . . , pn)+
n∑
i=1

piH (ni). (B.4)

For example,

H (9) = H (3/9,4/9,2/9)+ 3
9
H (3)+ 4

9
H (4) + 2

9
H (2). (B.5)

In particular, by setting all ni equal to m, from (B.4) we get

H (m) +H (n) =H (mn). (B.6)

This yields the unique solution

H (n) = C lnn, (B.7)
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with C > 0. By substituting in (B.4), we finally have

H (P) = −C
n∑
i=1

pi logpi. (B.8)

The constant C determines the base of the logarithm. Base-2 logarithms lead
to a measure of entropy and information in bits. For most mathematical cal-
culations, however, we use natural logarithms so that C = 1.

It is not very difficult to verify that the entropy has the following properties:

• H (P) ≥ 0.

• HP |Q) ≤ H (P) with equality if and only if P and Q are independent.

• H (P1, . . . , Pn) ≤
∑n
i=1H (Pi) with equality if and only if P and Q are

independent.

• H (P) is convex (∩) in P .

• H (P1, . . . , Pn) =
∑n
i=1H (Pi|Pi−1, . . . , P1).

• H (P) ≤H (n) with equality if and only if P is uniform.

B.2 Relative Entropy

The relative entropy between two distributions P = (p1, . . . , pn) and Q =
(q1, . . . , qn), or the associated random variables X and Y , is defined by

H (P ,Q) =H (X, Y ) =
n∑
i=1

pi log
pi
qi
. (B.9)

The relative entropy is also called cross-entropy, or Kullback–Liebler distance,
or discrimination (see [486], and references therein, for an axiomatic presenta-
tion of the relative entropy). It is viewed as a measure of the distance between
P and Q. The more dissimilar P and Q are, the larger the relative entropy. The
relative entropy is also the amount of information that a measurement gives
about the truth of a hypothesis compared with an alternative hypothesis. It is
also the expected value of the log-likelihood ratio. Strictly speaking, the rela-
tive entropy is not symmetric and therefore is not a distance. It can be made
symmetric by using the divergence H (P ,Q)+H (Q, P). But in most cases, the
symmetric version is not needed. If U = (1/n, . . . ,1/n) denotes the uniform
density, then H (P ,U) = logn−H (P). In this sense, the entropy is a special
case of cross-entropy.

By using the Jensen inequality (see section B.4), it is easy to verify the fol-
lowing two important properties of relative entropies:
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• H (P ,Q) ≥ 0 with equality if and only if P =Q.

• H (P ,Q) is convex (∩) in P and Q.

These properties are used throughout the sections on free energy in statistical
mechanics and the EM algorithm in chapters 3 and 4.

B.3 Mutual Information

The third concept for measuring information is the mutual information. Con-
sider two distributions P and Q associated with a joint distribution R over the
product space. The mutual information I(P ,Q) is the relative entropy between
the joint distribution R and the product of the marginals P and Q:

I(P ,Q) = H (R, PQ). (B.10)

As such, it is always positive. When R is factorial, i.e. equal to the product
of the marginals, the mutual information is 0. The mutual information is a
special case of relative entropy. Likewise, the entropy (or self-entropy) is a
special case of mutual information because H (P) = I(P , P). Furthermore, the
mutual information satisfies the following properties:

• I(P ,Q) = 0 if and only if P and Q are independent.

• I(P1, . . . , Pn,Q) =
∑n
i=1 I(Pi,Q|P1, . . . , Pi−1).

It is easy to understand mutual information in Bayesian terms: it rep-
resents the reduction in uncertainty of one variable when the other is ob-
served, that is between the prior and posterior distributions. If we denote
two random variables by X and Y , the uncertainty in X is measured by the
entropy of its prior H (X) = ∑

x P(X = x) log P(X = x). Once we observe
Y = y , the uncertainty in X is the entropy of the posterior distribution,
H (X|Y = y) = ∑

x P(X = x|Y = y) logP(X = x|Y = y). This is a ran-
dom variable that depends on the observation y . Its average over the possible
ys is called the conditional entropy:

H (X|Y) =
∑
y
P(y)H (X|Y = y). (B.11)

Therefore the difference between the entropy and the conditional entropy mea-
sures the average information that an observation of Y brings about X. It is
straightforward to check that

I(X, Y ) =H (X) −H (X|Y) =
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H (Y )−H (Y |X) = H (X)+H (Y )−H (Z) = I(Y ,X) (B.12)

where H (Z) is the entropy of the joint variable Z = (X, Y ). or, using the
corresponding distributions,

I(P ,Q) =H (P)−H (P |Q) =

H (Q) −H (Q|P) =H (P)+H (Q) −H (R) = I(Q, P). (B.13)

We leave for the reader to draw the classical Venn diagram associated with
these relations.

B.4 Jensen’s Inequality

The Jensen inequality is used many times throughout this book. If a function
f is convex (∩) and X is a random variable, then

Ef(X) ≤ fE(X). (B.14)

Furthermore, if f is strictly convex, equality implies that X is constant. This
inequality becomes graphically obvious if one thinks in terms of center of
gravity. The center of gravity of f(x1), . . . , f (xn) is below f(x∗), where x∗
is the center of gravity of x1, . . . , xn. As a special important case, E logX ≤
log E(X). This immediately yields the properties of the relative entropy.

B.5 Maximum Entropy

The maximum entropy principle was discussed in chapters 2 and 3 for the
case of discrete distributions. The precise statement of the maximum entropy
principle in the continuous case requires some care [282]. But in any case, if
we define the differential entropy of a random variable X with density P to be

H (X) = −
∫ +∞
−∞

P(x) logP(x)dx, (B.15)

then of all the densities with variance σ2, the Gaussian N (µ,σ) is the one
with the largest differential entropy. The differential entropy of a Gaussian
distribution with any mean and variance σ2 is given by [log 2πeσ2]/2. In
n dimensions, consider a random vector X with vector mean µ, covariance
matrix C , and density P . Then the differential entropy of P satisfies

H (P) ≤ 1
2

log(2πe)n|C| = H (N (µ,C)) (B.16)
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with equality if and only if X is distributed according to N (µ,C) almost ev-
erywhere. Here |C| denotes the determinant of C .

These results have a very simple proof using the derivation of the
Boltzmann–Gibbs distribution in statistical mechanics. For instance, in the
one-dimensional case, a Gaussian distribution can be seen as a Boltzmann–
Gibbs distribution with energy E(x) = (x − µ)2/2σ2 and partition function√

2πσ , at temperature 1. Thus the Gaussian distribution must have maximum
entropy, given that the only constraint is the observation of the expectation
of the energy. The mean of the energy is given by

∫
(x − µ)2/2σ2P(x)dx,

which is constant, equivalent to the statement that the standard deviation is
constant and equal to σ .

This can be generalized to the members of the exponential family of dis-
tributions. In the case of the Dirichlet distributions, consider the space of all
n-dimensional distributions P = (p1, . . . , pn). Suppose that we are given a
fixed distribution R = (r1, . . . , rn), and define the energy of a distributions by
its distance, measured in relative entropy, from R:

E(P) =H (R, P) =
∑
i
ri log ri −

∑
i
ri logpi. (B.17)

If all we observe is the average D of E , then the corresponding maximum
entropy distribution for P is the Boltzmann–Gibbs distribution

P(P) = e
−λE

Z
= e

−λH (R,P)

Z
= eλH (R)∏

i p
λri
i

Z(λ,R)
, (B.18)

where λ is the temperature, which depends on the value D of the average
energy. Now, if we let α = λ+n and qi = (λri+1)/(λ+n), this distribution is
in fact the Dirichlet distribution DαQ(P) with parameters α and Q (note that
α ≥ 0, qi ≥ 0, and

∑
i qi = 1). If ri is uniform, then qi is also uniform. Thus

any Dirichlet distribution can be seen as the result of a MaxEnt calculation.

B.6 Minimum Relative Entropy

The minimum relative entropy principle [486] states that if a prior distribu-
tion Q is given, then one should choose a distribution P that satisfies all the
constraints of the problem and minimizes the relative entropy H (P ,Q). The
MaxEnt principle is obviously a special case of the minimum relative entropy
principle, when Q is uniform. As stated, the minimum relative entropy princi-
ple is a principle for finding posterior distributions, or for selecting a praticu-
lar class of priors. But the proper theory for finding posterior distributions is
the Bayesian theory, and therefore the minimum relative entropy principle (or
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MaxEnt) cannot have any universal value. In fact, there are known examples
where MaxEnt seems to give the “wrong” answer [229]. Thus, in our view, it
is unlikely that a general principle exists for the determination of priors. Or
if such a principle is really desirable, it should be that the most basic prior of
any model should be uniform. In other words, in any modeling effort there is
an underlying hierarchy of priors, and priors at the zero level of the hierarchy
should always be uniform in a canonical way. It is instructive to look in de-
tail at the cases where the minimum relative entropy principle yields the same
result as a Bayesian MAP estimation (see chapter 3).
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Appendix C

Probabilistic Graphical Models

C.1 Notation and Preliminaries

In this appendix, we review the basic theory of probabilistic graphical models
[557, 348] and the corresponding factorization of high-dimensional probabil-
ity distributions. First, a point of notation. If X and Y are two independent
random variables, we write X⊥Y . Conditional independence on Z is denoted
by X⊥Y |Z. This means that P(X, Y |Z) = P(X|Z)P(Y |Z). It is important to note
that conditional independence implies neither marginal independence nor the
converse. By G = (V , E) denote a graph with a set V of vertices and a set E of
edges. The vertices are numbered V = {1,2, ..., n}. If the edges are directed,
we write G = (V , �E). In all the graphs to be considered, there is at most one
edge between any two vertices, and there are no edges from a vertex to itself.
In an undirected graph, N(i) represents the sets of all the neighbors of vertex
i and C(i) represents the set of all the vertices that are connected to i by a
path. So,

N(i) = {j ∈ V : (i, j) ∈ E}. (C.1)

If there is an edge between any pair of vertices, a graph is said to be complete.
The cliques of G are the subgraphs of G that are both complete and maximal.
The clique graph GC of a graph G is the graph consisting of a vertex for each
clique in G, and an edge between two vertices, if and only if the corresponding
cliques have a nonempty intersection.

In a directed graph, the direction of the edges will often represent causality
or time irreversibility. We use the obvious notation N−(i) and N+(i) to denote
all the parents of i and all the children of i, respectively. Likewise, C−(i) and
C+(i) denote the ancestors, or the “past,” and the descendants of i, or the
“future,” of i. All these notations are extended in the obvious way to any set

365
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of vertices I . So for any I ∈ V ,

N(I) = {j ∈ V : i ∈ I and (i, j) ∈ E} − I. (C.2)

This is also called the boundary of I . In an undirected graph, a set of vertices
I is separated from a set J by a set K if and only if I and J are disjoint and any
path from any vertex in I to any vertex in J contains a vertex in K.

We are interested in high-dimensional probability distributions of the form
P(X1, ..., Xn), where the X variables represent both hidden and observed vari-
ables. In particular, we are interested in the factorization of such distributions
into products of simpler distributions, such as conditionals and marginals.
Obviously, it is possible to describe the joint distribution using the marginals

P(X1, ..., Xn) =
n−1∏
i=0

P(Xi+1|X1, ..., Xi). (C.3)

The set of complete conditional distributions P(Xi|Xj : j �= i) also defines
the joint distribution in a unique way, provided they are consistent (or else
no joint distribution can be defined) [68, 20]. The complete set of marginals
P(Xi) is in general highly insufficent to define the joint distribution, except
in special cases (see factorial distributions below). The problem of determin-
ing a multivariate joint distribution uniquely from an arbitrary set of marginal
and conditional distributions is examined in [198]. As we shall see, graphical
models correspond to joint distributions that can be expressed economically
in terms of local conditionals, or joint distributions over small clusters of vari-
ables. Probabilistic inference in such models allows one to approximate useful
probabilities, such as posteriors. A number of techniques are typically used
to carry inference approximations, including probability propagation, Monte
Carlo methods, statistical mechanics, variational methods, and inverse mod-
els.

For technical reasons [557], we assume that P(X1, ..., Xn) is positive every-
where, which is not restrictive for practical applications because rare events
can be assigned very small but nonzero probabilities. We consider graphs of
the form G = (V , E), or G = (V , �E), where each variable Xi is associated with
the corresponding vertex i. We let XI denote the set of variables Xi : i ∈ I ,
associated with a set I of indices. For a fixed graph G, we will denote by P(G)
a family of probability distributions satisfying a set of independence assump-
tions embodied in the connectivity of G. Roughly speaking, the absence of
an edge signifies the existence of an independence relationship. These inde-
pendence relationships are defined precisely in the next two sections, in the
two main cases of undirected and directed graphs. In modeling situations, the
real probability distribution may not belong to the set P(G), for any G. The
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goal then is to find a G and a member of P(G) as close as possible to the real
distribution—for instance, in terms of relative entropy.

C.2 The Undirected Case: Markov Random Fields

In the undirected case, the family P(G) corresponds to the notion of Markov
random field, or Markov network, or probabilistic independence network, or, in
a slightly different context, Boltzmann machine [272, 2]. Symmetric interaction
models are typically used in statistical mechanics—for example, Ising models
and image processing [199, 392], where associations are considered to be more
correlational than causal.

C.2.1 Markov Properties

A Markov random field on a graph G is characterized by any one of the fol-
lowing three equivalent Markov independence properties. The equivalence of
these properties is remarkable, and its proof is left as an exercise.

1. Pairwise Markov Property. Nonneighboring pairs Xi and Xj are inde-
pendent, conditional on all the other variables. That is, for any (i, j) �∈ E,

Xi⊥Xj|XV−{i,j}. (C.4)

2. Local Markov Property. Conditional on its neighbors, any variable Xi is
independent of all the other variables. That is, for any i in V ,

Xi⊥XV−N(i)∪{i}|XN(i). (C.5)

3. Global Markov Property. If I and J are two disjoint sets of vertices, sepa-
rated by K, the corresponding set of variables is independent conditional
on the variables in the third set:

XI⊥XJ|XK. (C.6)

These independence properties are equivalent to the statement

P(Xi|XV−{i}) = P(Xi|XN(i)). (C.7)

C.2.2 Factorization Properties

The functions P(Xi|Xj : j ∈ N(i)) are called the local characteristics of the
Markov random field. It can be shown that they uniquely determine the global
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distribution P(X1, ..., Xn), although in a complex way. In particular, and unlike
what happens in the directed case, the global distribution is not the product of
all the local characteristics. There is, however, an important theorem that re-
lates Markov random fields to Boltzmann–Gibbs distributions. It can be shown
that, as a result of the local independence property, the global distribution of
a Markov random field has the functional form

P(X1, ..., Xn) = e−f(X1,...,Xn)

Z
= e−

∑
C fC(XC)

Z
, (C.8)

where Z is the usual normalizing factor. C runs over all the cliques of G, and
fC is called the potential or clique function of clique C . It depends only on the
variables XC occurring in the corresponding clique. f is also called the energy.
In fact, P and G determine a Markov random field if and only if (C.8) holds
[500].

It is easy to derive the local characteristics and marginals from the po-
tential clique functions by applying the definition in combination with the
Boltzmann–Gibbs representation. The potential functions, on the other hand,
are not unique. The determination of a set of potential functions in the gen-
eral case is more elaborate. But there are formulas to derive the potential
functions from the local characteristics. There is an important special case
that is particularly simple. This is when the graph G is triangulated. A graph
G is triangulated if any cycle of length greater than or equal to 4 contains at
least one chord. A singly connected graph (i.e. a tree) is an important special
case of a triangulated graph. A graph is triangulated if and only if its clique
graph has a special property called the running intersection property, which
states that if a vertex of G belongs to two cliques C1 and C2 of G, it must also
belong to all the other cliques on a path from C1 to C2 in the clique graph GC .
The intersection of two neighboring cliques C1 and C2 of G—that is, two adja-
cent nodes of GC—is called a separator. In a triangulated graph, a separator
of C1 and C2 separates them in the probabilistic independence sense defined
above.

Another important characterization of triangulated graphs is in terms of
perfect numbering. A numbering of the nodes in V is perfect if for all i, N(i)∩
{1,2, ..., i − 1} is complete. A graph is triangulated if and only if it admits a
perfect numbering (see [512], [350], and references therein).] The key point
here is that for Markov random fields associated with a triangulated graph,
the global distribution has the form

P(X1, ..., Xn) =
∏
C P(XC)∏
S P(XS)

, (C.9)

where C runs over the cliques and S runs over the separators, occurring in a
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junction tree, that is, a maximal spanning tree of GC .
∏
C P(XC) is the marginal

joint distribution of XC . The clique potential functions are then obvious.
A very special case of the Markov random field is when the graph G has

no edges. This is the case when all the variables Xi are independent and
P(X1, ..., Xn) =

∏n
i=1 P(Xi). Such joint distributions or Markov random fields

are called factorial. Given a multivariate joint distribution P , it is easy to see
that among all factorial distributions, the one that is closest to P in relative
entropy is the product of the marginals of P .

C.3 The Directed Case: Bayesian Networks

In the directed case, the family P(G) corresponds to the notions of Bayesian
networks, belief networks, directed independence probabilistic networks, di-
rected Markov fields, causal networks, influence diagrams, and even Markov
meshes [416, 557, 121, 106, 286, 246] (see [322] for a simple molecular bi-
ology illustration). As already mentioned, the direction on the edges usually
represents causality or time irreversibility. Such models are common, for in-
stance, in the design of expert systems.

In the directed case, we have a directed graph G = (V , �E). The graph is
also assumed to be acyclic, that is, with no directed cycles. This is because
it is not possible to consistently define the joint probability of the variables
in a cycle from the product of the local conditioning probabilities. That is, in
general the product P(X2|X1)P(X3|X2)P(X1|X3) does not consistently define
a distribution on X1, X2, X3. An acyclic directed graph represents a partial
ordering. In particular, it is possible to number its vertices so that if there is
an edge from i to j, then i < j. In other words, the partial ordering associated
with the edges is consistent with the numbering. This ordering is also called
a topological sort. We will assume that such an ordering has been chosen
whenever necessary, so that, the past of i C−(i) is included in {1,2, ..., i − 1},
and the future C+(i) is included in {i + 1, ..., n}. The moral of G = (V , �E) is
the undirected graph GM = (V , E +M) obtained by removing the direction on
the edges of G and by adding an edge between any two nodes that are parents
of the same child in G (if they are not already connected, of course). The
term “moral” was introduced in [350] and refers to the fact that all parents
are “married.” We can now describe the Markov independence properties of
graphical models with an underlying acyclic directed graph.

C.3.1 Markov Properties

A Bayesian network on a directed acyclic graph G is characterized by any one
of a number of equivalent independence properties. In all cases, the basic
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Markov idea in the directed case is that, conditioned on the present, the future
is independent of the past or, equivalently, that in order to predict the future,
all the relevant information is assumed to be in the present.

Pairwise Markov Property

Nonneighboring pairs Xi and Xj with i < j are independent, conditional on all
the other variables in the past of j. That is, for any (i, j) �∈ �E and i < j,

Xi⊥Xj|XC−(j)−{i}. (C.10)

In fact, one can replace C−(j) with the larger set {1, ..., j − 1}. Another equiv-
alent statement is that, conditional on a set of nodes I , Xi is independent of
Xj if and only if i and j are d-separated, that is, if there is no d-connecting
path from i to j [121]. A d-connecting path from i to j is defined as follows.
Consider a node k on a path from i to j. The node k is called linear, divergent,
or convergent, depending on whether the two edges adjacent to it on the path
are incoming and outgoing, both outgoing, or both incoming. The path from i
to j is d-connecting with respect to I if and only if every interior node k on the
path is either (1) linear or diverging and not a member of I , or (2) converging,
and [k ∪ C+(k)] ∩ I �= ∅. Intuitively, i and j are d-connected if and only if
either (1) there is a causal path between them or (2) there is evidence in I that
renders the two nodes correlated with each other.

Local Markov Property

Conditional on its parents, a variable Xi is independent of all other nodes,
except for its descendants. Thus

Xi⊥Xj |XN−(i), (C.11)

as long as j �∈ C+(i) and j �= i.

Global Markov Property

If I and J are two disjoint sets of vertices, we say that K separates I and J in
the directed graph G if and only if K separates I and J in the moral undirected
graph of the smallest ancestral set containing I , J, and K [349]. With this
notion of separation, the global Markov property is the same—that is, if K
separates I and J,

XI⊥XJ|XK. (C.12)

It can be also be shown [557] that the directed graph G satisfies all the
Markov independence relationships of the associated moral graph GM . The
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converse is not true in general, unless GM is obtained from G by removing
edge orientation only, that is, without any marriages. Finally, any one of the
three Markov independence properties is equivalent to the statement

P(Xi|XC−(i)) = P(Xi|XN−(i)). (C.13)

In fact, C−(i) can be replaced by the larger set {1, ..., i − 1}.

C.3.2 Factorization Properties

It is not difficult to see, as a result, that the unilateral local characteristics
P(Xi|XN−(i)) are consistent with one another, and in fact uniquely determine a
Bayesian network on a given graph. Indeed, we have

P(X1, ..., Xn) =
∏
i

P(Xi|XN−(i)). (C.14)

This property is fundamental. The local conditional probabilities can be speci-
fied in terms of lookup tables, although this is often impractical due to the size
of the tables. A number of more compact but also less general representations
are often used, such as noisy OR- [416] or NN-style representations, such as
sigmoidal belief networks [395] for binary variables, where the characteristics
are defined by local connection weights and sigmoidal functions, or the ob-
vious generalization to multivalued variables using normalized exponentials.
Having a local NN at each vertex to compute the local characteristics is another
example of hybrid model parameterization.

C.3.3 Learning and Propagation

There are several levels of learning in graphical models in general and Bayesian
networks in particular, from learning the graph structure itself to learning the
local conditional distributions from the data. With the exception of section
C.3.6, these will not be discussed here; reviews and pointers to the literature
can be found in [106, 246]. Another fundamental operation with Bayesian
networks is the propagation of evidence, that is, the updating of the probabil-
ities of each Xi conditioned on the observed node variables. Evidence prop-
agation is NP-complete in the general case [135]. But for singly connected
graphs (no more than one path between any two nodes in the underlying undi-
rected graph), propagation can be executed in time linear with n, the number
of nodes, using a simple message-passing approach [416, 4]. In the general
case, all known exact algorithms for multiply connected networks rely on the
construction of an equivalent singly connected network, the junction tree, by
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clustering the original variables, according to the cliques of the corresponding
triangulated moral graph ([416, 350, 467], with refinements in [287]).

A similar algorithm for the estimation of the most probable configuration
of the variables Xi is given in [145]. Schachter et al. [468] show that all the
known exact inference algorithms are equivalent in some sense to the algo-
rithms in [287] and [145]. An important conjecture, supported both by emprir-
ical evidence and results in coding theory, is that the simple message-passing
algorithm of [416] yields reasonably good approximations in the multiply con-
nected case (see [385] for details).

C.3.4 Generality

It is worth noting that the majority of models used in this book can be viewed
as instances of Bayesian networks. Artificial feed-forward NNs are Bayesian
networks in which the local conditional probability functions are delta func-
tions. Likewise, HMMs and Markov systems in general have a very simple
Bayesian network representation. In fact, HMMs are a special case of both
Markov random fields and Bayesian networks. We leave as a useful exercise
for the reader to derive these representations, as well as the Bayesian network
representation of many other concepts such as mixtures, hierarchical priors,
Kalman filters and other state space models, and so on. The generality of the
Bayesian network representation is at the root of many new classes of mod-
els currently under investigation. This is the case for several generalizations
of HMMs, such as input-output HMMs (see chapter 9), tree-structured HMMs
[293], and factorial HMMs [205].

When the general Bayesian network propagation algorithms are applied in
special cases, one “rediscovers” well-known algorithms. For instance, in the
case of HMMs, one obtains the usual forward–backward and Viterbi algorithms
directly from Pearl’s algorithm [493]. The same is true of several algorithms in
coding theory (turbo codes, Gallager–Tanner–Wiberg decoding) and in the the-
ory of Kalman filters (the Rauch–Tung–Streibel smoother), and even of certain
combinatorial algorithms (fast Fourier transform) [4, 204]. We suspect that
the inside–outside algorithm for context-free grammar is also a special case,
although we have not checked carefully. While belief propagation in general re-
mains NP-complete, approximate algorithms can often be derived using Monte
Carlo methods such as Gibbs sampling [210, 578], and variational methods
such as mean field theory (appendix A and [465, 276, 204]), sometimes lever-
aging the particular structure of a network. Gibbs sampling is particularly
attractive for Bayesian networks because of its simplicity and generality.
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C.3.5 Gibbs Sampling

Assuming that we observe the values of the variables associated with some of
the visible nodes, we want to sample the value of any other node i according to
its conditional probability, given all the other variables. From the factorization
(C.14), we have

P(Xi|XV−{i}) = P(XV)
P(XV−{i})

=
∏
j P(Xj|XN−(j))∑

xi P(X1, . . . , Xi = xi, . . . , Xn) , (C.15)

which yields, after simplifications of common numerator and denominator
terms,

P(Xi|XV−{i}) =
P(Xi|XN−(i))

∏
j∈N+(i) P(Xj|XN−(j))∑

xi P(Xi = xi|N−(i))
∏
j∈N+(i) P(Xj |XN−(j)) . (C.16)

As expected, the conditional distributions needed for Gibbs sampling are lo-
cal and depend only on i, its parents, and its children. Posterior estimates can
then be obtained by averaging simple counts at each node, which requires very
little memory. Additional precision may be obtained by averaging the probabil-
ities at each node (see [396] for a partial discussion). As in any Gibbs sampling
situation, important issues are the duration of the procedure (or repeated pro-
cedure, if the sampler is used for multiple runs) and the discarding of the
initial samples (“burn-in”), which can be nonrepresentative of the equilibrium
distribution.

C.3.6 Sleep–Wake Algorithm and Helmholtz Machines

A theoretically interesting, but not necessarily practical, learning algorithm
for the conditional distributions of a particular class of Bayesian networks is
described in [255, 146]. These Bayesian networks consist of two inverse mod-
els: the recognition network and the generative network. Starting from the
input layer, the recognition network has a feed-forward layered architecture.
The nodes in all the hidden layers correspond to stochastic binary variables,
but more general versions—for instance, with multivalued units—are possible.
The local conditional distributions are implemented in NN style, using combi-
national weights and sigmoidal logistic functions. The probability that unit i
is on is given by

P(Xi = 1) = 1

1+ e−
∑
k∈N−(i) wikxk+bli

, (C.17)

where xk denotes the states of the nodes in the previous layer. The gener-
ative network mirrors the recognition network. It is a feed-forward layered
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network that begins with the top hidden layer of the recognition network and
ends up with the input layer. It uses the same units but with a reverse set
of connections. These reverse connections introduce local loops so the com-
bined architecture is not acyclic. This is not significant, however, because the
networks are used in alternation rather than simultaneously.

The sleep–wake algorithm, named after its putative biological interpreta-
tion, is an unsupervised learning algorithm for the forward and backward con-
nection weights. The algorithm alternates between two phases. During each
phase, the unit activities in one of the networks are used as local targets to
train the weights in the opposite network, using the delta rule. During the
wake phase, the recognition network is activated and each generative weight
wjk is updated by

∆wjk = ηxk(xj − pj), (C.18)

where xj represents the state of unit j in the recognition network and pj the
corresponding probability calculated as in (C.17), using the generative connec-
tions. A symmetric update rule is used during the sleep phase, where the
fantasies (dreams) produced by the generative network are used to modify the
recognition weights [255, 574].



Appendix D

HMM Technicalities, Scaling,
Periodic Architectures,
State Functions, and Dirichlet
Mixtures

D.1 Scaling

As already pointed out, the probabilities P(π|O,w) are typically very small,
beyond machine precision, and so are the forward variables αi(t), as t in-
creases. A similar observation can be made for the backward variables βi(t),
as t decreases. One solution for this problem is to scale the forward and back-
ward variables at time t by a suitable coefficient that depends only on t. The
scalings on the αs and βs are defined in a complementary way so that the
learning equations remain essentially invariant under scaling. We now give
the exact equations for scaling the forward and backward variables, along the
lines described in [439].1 For simplicity, throughout this section, we consider
an HMM with emitting states only. We leave as an exercise for the reader to
adapt the equations to the general case where delete states are also present.

1The scaling equations in [439] contain a few errors. A correction sheet is available from the
author.
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D.1.1 Scaling of Forward Variables

More precisely, we define the scaled variables thus:

α̂i(t) = αi(t)∑
j αj(t)

. (D.1)

At time 0, for any state i, we have αi(0) = α̂i(0). The scaled variables α̂i(t)
can be computed recursively by alternating a propagation step with a scaling
step. Let ˆ̂αi(t) represent the propagated α̂i(t) before scaling. Assuming that
all variables have been computed up to time t − 1, we first propagate α̂i by
(7.5):

ˆ̂αi(t) =
∑

j∈N−(i)
α̂j(t − 1)tijeiXt , (D.2)

with ˆ̂αi(0) = αi(0). The same remarks as for the propagation of the αi(t)
apply here. Therefore, using (D.1),

ˆ̂αi(t) = αi(t)∑
j αj(t − 1)

. (D.3)

We then scale the ˆ̂α(t)s, which by (D.3) is equivalent to scaling the αs:

ˆ̂αi(t)∑
j ˆ̂αj(t)

= αi(t)∑
j αj(t)

= α̂i(t). (D.4)

This requires computing at each time step the scaling coefficient c(t) =∑
i α̂i(t). From (D.3), the relation between c(t) and the scaling coefficent

C(t) =∑i αi(t) of the αs is given by:

C(t) =
t∏

τ=1

c(τ). (D.5)

D.1.2 Scaling of Backward Variables

The scaling of the backward variables is slightly different, in that the scaling
factors are computed from the forward propagation rather than from the βs.
In particular, this implies that the forward propagation must be completed in
order for the backward propagation to begin. Specifically, we define the scaled

β̂i(t) = βi(t)
D(t)

. (D.6)
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The scaling coefficient is defined to be

D(t) =
T∏
τ=t

c(τ). (D.7)

The reason for this choice will become apparent below. Assuming all vari-
ables have been computed backward to time t + 1, the β̂s are first propagated
backward using (7.10) to yield the variables

ˆ̂βi(t) =
∑

j∈N+(i)
β̂j(t + 1)tjiejXt+1 . (D.8)

The ˆ̂βi(t) are then scaled by c(t), to yield

β̂i(t) =
ˆ̂βi(t)
c(t)

= βi(t)
D(t)

(D.9)

as required by (D.6).

D.1.3 Learning

Consider now any learning equation, such as the EM equation for the transition
parameters (7.31):

t+ji =
∑T
t=0 γji(t)∑T
t=0 γi(t)

=
∑T
t=0αi(t)tjiejXt+1βj(t + 1)∑T

t=0
∑
j∈S αi(t)tjiejXt+1βj(t + 1)

. (D.10)

Any product of the form αi(t)βj(t + 1) is equal to Cα̂i(t)β̂j(t + 1), with C =
C(t)D(t+1) =∏T

1 c(t) independent of t. The constant C cancels out from the
numerator and the denominator. Therefore the same learning equation can be
used by simply replacing the αs and βs with the corresponding scaled α̂s and
β̂s. Similar remarks apply to the other learning equations.

D.2 Periodic Architectures

D.2.1 Wheel Architecture

In the wheel architecture of chapter 8, we can consider that there is a start
state connected to all the states in the wheel. Likewise, we can consider that
all the states along the wheel are connected to an end state. The wheel archi-
tecture contains no delete states, and therefore all the algorithms (forward,
backward, Viterbi, and scaling) are simplified, in the sense that there is no
need to distinguish between emitting and delete states.
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D.2.2 Loop Architecture

The loop architecture is more general than the wheel architecture because
it contains delete states, and even the possibility of looping through delete
states. We introduce the following notation:

• h is the anchor state of the loop. The anchor state is a delete (silent)
state, although it is not associated with any main state.

• L denotes the set of states in the loop.

• κ denotes the probability of going once around the loop silently. It is
the product of all the tji associated with consecutive delete states in the
loop.

• tdji is the probability of the shortest direct silent path from i to j in the
architecture.

• tDji is the probability of moving silently from i to j. For any two states

connected by at least one path containing the anchor, we have tDji =
tdji(1+ κ + (κ2) . . .) = tdji/(1− κ).

Forward Propagation Equations

Forward propagation equations are true both for instantaneous propagation
and at equilibrium. For any emitting state i ∈ E,

αi(t + 1) =
∑

j∈N−(i)
αj(t)tijeiXt+1 . (D.11)

For any silent state i, including the anchor state,

αi(t + 1) =
∑

j∈N−(i)
αj(t + 1)tij . (D.12)

For the anchor state, one may separate the contribution from the loop and
from the flanks as

αh(t + 1) =
∑

j∈N−(h)−L
αj(t + 1)thj +

∑
j∈N−(h)∩L

αj(t + 1)thj . (D.13)
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Implementations

There are three possible ways of implementing the propagation. First, iterate
instantaneous propagation equations until equilibrium is reached. Second,
iterate the equilibrium equations only once through the loop, for the anchor
state. That is, write x = αh(t + 1), forward-propagate the above equations
once through the loop as a function of x, and solve for x at the end. Once
the loop is completed, this yields an equation of the form x = ax + b and so
x = b/(1 − a). Then replace x by its newly found value in the expression of
αi(t + 1) for all i ∈ L.

Third, solve analytically for x. That is, directly find the equilibrium value
of x = αh(t + 1) (i.e., a and b above). For this, note that the paths leading to
the expression of αh(t + 1) can be partitioned into two classes depending on
whether Xt+1 is emitted inside or outside the loop:

αh(t + 1) =
∑

j∈N−(h)−L
αj(t + 1)thj(1+κ+κ2+ . . .)+

∑
j∈E∩L

αj(t+1)tDhj. (D.14)

Thus the second term in the right-hand side accounts for the case where the
emission of Xt+1 inside the loop is followed by any number of silent revolu-
tions terminating with the anchor state. This term contains unknown quanti-
ties such as αj(t+1). These are easy to calculate, however, using the values of
αj(t) that are known from the previous epoch of the propagation algorithm.
So finally,

αh(t+1) = 1
1− κ

∑
j∈N−(h)−L

αj(t+1)thj+
∑

j∈E∩L

∑
k∈N−(j)

αk(t)ajkejXt+1tDhj. (D.15)

For the specific calculation of the last sum above, we consider the following
implementation, where we forward-propagate two quantities, αi(t) and αLi (t).
αLi (t) is to be interpreted as the probability of being in state i at time t while
having emitted symbol t in the loop and not having traversed the anchor state
yet again. For any emitting state i in the loop, the propagation equations are

αi(t + 1) = αLi (t + 1) =
∑

j∈N−(i)
αj(t)tij eiXt+1 . (D.16)

For any mute state (delete states and anchor) i in the loop, the propagation
equations are

αLi (t + 1) =
∑

j∈N−(i)∩L
αLj (t + 1)tij . (D.17)

These equations should be initialized with αLh(t + 1) = 0 and propagated all
the way once through the loop to yield, at the end, a new value for αLh(t + 1).
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We then have

αh(t + 1) = 1
1− κ [

∑
j∈N−(h)−L

αj(t + 1)thj +αLh(t + 1)]. (D.18)

At time 0, initialization is as follows:

• αi(0) = 0 for any emitting state

• αLi (0) = 0 for any state, including the anchor

• αh(0) =
∑
j∈N−(h)−L αj(0)thj/(1− κ)

• αi(0) =
∑
j∈N−(i) αj(0)tij for any mute state in the loop exept the anchor

All variables can be computed with one pass through the loop by using
propagating α(t) and αL(t) simultaneously through the loop, in the following
order. At step t, assume that αi(t) is known for the anchor state and all
emitting states. Then:

• Set αLh(t + 1) to 0.

• Forward-propagate simultaneously through the loop the quantities αi(t)
for mute states (D.12), αi(t + 1) = αLi (t + 1) for emitting states (D.16),
and αLi (t + 1) for all mute states (D.17).

• Calculate αh(t + 1) by (D.18).

Backward propagation and scaling equations for the loop architecture can be
derived along the same lines.

D.3 State Functions: Bendability

As discussed in chapters 7 and 8, any function that depends on the local amino
acid or nucleotide composition of a family, such as entropy, hydrophobicity, or
bendability, can be studied with HMMs. In particular, the expectation of such
a function computed from the HMM backbone probabilities enhances patterns
that are not always clearly present in individual members of the family. This
expectation is straightforward to compute when the corresponding function or
scale is defined over single alphabet letters (entropy, hydrophobicity). A little
more care is needed when the function depends on adjacent pair or triplet of
letters, usually DNA dinucleotides or trinucleotides (bendability, nucleosome
positioning, stacking energies, propeller twist). Convolving several functions
with the HMM backbone can help determine structural and functional proper-
ties of the corresponding family. Over 50 different functions are available in
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our current HMM simulator. Here we show how to compute such expectations
in the case of bendability, which is a little harder because of its dependence
on triplets rather than single letters.

D.3.1 Motivation

Average bending profiles can be computed directly from a multiple alignment
of the available sequences to avoid the risk of introducing exogenous artifacts.
It is useful, however, to be able to define and compute bending profiles directly
from an HMM, for several reasons.

• The computation is faster because it can be executed as soon as the HMM
is trained, without having to align all the sequences to the model.

• In many of the cases we have tried, the profiles derived from the HMM
and the multiple alignment have very similar characteristics. Consistency
of the two bending profiles can be taken as further evidence that the
HMM is a good model of the data. Discrepant cases may yield additional
insights.

• In certain cases—for example, when few data are available—a well-
regularized HMM may yield better bending profiles.

D.3.2 Definition of HMM Bending Profiles

We assume a standard linear HMM architecture, but similar calculations can be
done with the loop or wheel architectures. In the definition of an HMM bending
profile, it is natural to consider only HMM main states m0, . . . ,mN+1, where
m0 is the start state and mN+1 is the end state (unless there are particularly
strong transitions to insert states or delete states, in which case such states
should be included in the calculation). The bendability B(i,O) of a sequence
O = (X1

O, . . . ,X
N
O) at a position i, away from the boundary, can be defined by

averaging triplet bendabilities over a window of length W = 2l + 1:

B(i,O) = 1
W

i+l−2∑
j=i−l

b(XjO, . . . ,X
j+2
O ), (D.19)

where b(X,Y,Z) denotes the bendability of the XYZ triplet according to some
scale ([96] and references therein). The bendability B(i) of the family at posi-
tion i is then naturally defined by taking the average over all possible backbone
sequences:

B(i) =
∑
O
B(i,O)P(O). (D.20)
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This approach, however, is not efficient because the number of possible se-
quences is exponential in N. Fortunately, there exists a better way of organiz-
ing this calculation.

D.3.3 Efficient Computation of Bendability Profiles

From (D.20), we find

B(i) =
∑
O
B(i,O)

N∏
k=1

ekXkO

N+1∏
k=0

tmkmk+1 . (D.21)

The last product is the product of all HMM backbone transitions and is equal
to some constant C . Substituting (D.19) in (D.21), we have

B(i) = C
W

∑
O

i+l−2∑
j=i−l

b(XjO, . . . ,X
j+2
O )

N∏
k=1

ekXkO . (D.22)

Interchanging the sums yields

B(i) = C
W

i+l−2∑
j=i−l

∑
O
b(XjO, . . . ,X

j+2
O )

N∏
k=1

ekXkO . (D.23)

To sum over all sequences, we can partition the sequences into different
groups according to the letters X,Y, and Z appearing at positions j, j + 1, and
j + 2. After simplifications, this finally yields

B(i) = C
W

i+l−2∑
j=i−l

∑
X,Y,Z

b(X,Y,Z)ejXej+1Yej+2Z. (D.24)

Thus the definition in (D.20) is equivalent to the definition in (D.24), where
summations within a window occur over all possible alphabet triplets weighted
by the product of the corresponding emission probabilities at the correspond-
ing locations. Definition (D.24) is of course the easiest to implement and we
have used it to compute bending profiles from trained HMMs, usually omitting
the constant scaling factor C/W . In general, boundary effects for the first and
last l states are not relevant.

D.4 Dirichlet Mixtures

First recall from chapters 2 and 3 that the mean of a Dirichlet distribution
DαQ(P) is Q, and the maximum is reached for pX = (αqX − 1)/(α − |A|)
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provided pX ≥ 0 for all X. A mixture of Dirichlet distributions is defined by
P(P) =∑n

1 λiDαiQi(P), where the mixture coefficients must satisfy λi ≥ 0 and∑
i λi = 1. The expectation of the mixture is

∑
i λiQi, by linearity of the expec-

tation. For a Dirichlet mixture, the maximum in general cannot be determined
analytically.

D.4.1 Dirichlet Mixture Prior

Now consider the problem of choosing a prior for the emission distribution
P = (pX) associated with an HMM emitting state or, equivalently, the dice
model associated with a column of an alignment. Thus here pX are the param-
eters of the model. The data D consists of the letters observed in the column
with the corresponding counts D = (nX), with

∑
XnX = N. The likelihood

function for the data is given by

P(D|M) = P(nX|pX) =
∏
X

pnXX . (D.25)

We have seen that a natural prior is to use a single Dirichlet distribution. The
flexibility of such a prior may sometimes be too limited, especially if the same
Dirichlet is used for all columns or all emitting states. A more flexible prior is
a Dirichlet mixture

P(P) =
n∑
i=1

λiDαiQi(P) (D.26)

as in [489], where again the same mixture is used for all possible columns, to
reflect the general distribution of amino acid in proteins. The mixture com-
ponents DαiQi , their number, and the mixture coefficients can be found by
clustering methods. An alternative for protein models is to use the vectors
Qi associated with the columns of a PAM matrix (see chapter 10 and [497]).
Note that the present mixture model is different from having a different set
of mixing coefficients for each column prior. It is also different from parame-
terizing each P as a mixture in order to reduce the number of HMM emission
parameters, provided n < |A| (n = 9 is considered optimal in [489]), in a way
similar to the hybrid HMM/NN models of chapter 9. We leave it as an exercise
for the reader to explore such alternatives.

Now, from the single Dirichlet mixture prior and the likelihood, the poste-
rior is easily computed using Bayes’ theorem as usual

P(P |D) = 1
P(D)

n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

DβiRi(P). (D.27)
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The new mixture components are given by

βi = N +αi and riX = nX +αiqiX
N +αi . (D.28)

The beta function B is defined as

B(α,Q) =
∏

X Γ(αqX)
Γ(α)

, (D.29)

as usual with α ≥ 0, qX ≥ 0, and
∑

X qX = 1. The posterior of a mixture of
conjugate distributions is also a mixture of conjugate distributions. In this
case, the posterior is also a Dirchlet mixture, but with different mixture com-
ponents and mixture coefficients. Since the integral of the posterior over P
must be equal to one, we immediately have the evidence

P(D) =
n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

. (D.30)

As pointed out above, the MAP estimate cannot be determined analytically,
although it could be approximated by some iterative procedure. The MP esti-
mate, however, is trivial since it corresponds to the average of the posterior

p∗X =
1

P(D)

n∑
i=1

λi
B(βi, Ri)
B(αi,Qi)

riX. (D.31)

This provides a formula for the estimation of optimal model parameters in
this framework. Numerical implementation issues are discussed in [489].

D.4.2 Hierarchical Dirichlet Model

In hierarchical modeling, we introduce a higher level of priors, for in-
stance with a Dirichlet prior on the mixture coefficients of the previous
model. This two-level model is also a mixture model in the sense that
P(P |λ)= ∑λiDαiQi(P) but with

P(λ) =DβQ(λ) = Γ(β)∏
i Γ(βqi)

n∏
i=1

λβqi−1
i . (D.32)

We then have

P(P) =
∫
λ

P(P |λ)P(λ)dλ. (D.33)
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Interchanging sums and integrals yields

P(P) =
n∑
i=1

DαiQi(P)[
∫
λ
λiDβQ(λ)dλ] =

n∑
i=1

qiDαiQi(P), (D.34)

the second equality resulting from the Dirichlet expectation formula. Thus
this two-level hierarchical model is in fact equivalent to a one-level Dirichlet
mixture model, where the mixture coefficients qi are the expectation of the
second-level Dirichlet prior in the hierarchical model.
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Appendix E

Gaussian Processes, Kernel
Methods, and Support
Vector Machines

In this appendix we briefly review several important classes of machine learn-
ing methods: Gaussian processes, kernel methods, and support vector ma-
chines [533, 141].

E.1 Gaussian Process Models

Consider a regression problem consisting of K input-output training pairs
(x1, y1),..., (xK,yK) drawn from some unknown distribution. The inputs x are
n-dimensional vectors. For simplicity, we assume that y is one-dimensional,
but the extension to the multidimensional case is straightforward. The goal
in regression is to learn the functional relationship between x and y from the
given examples. The Gaussian process modeling approach [559, 206, 399], also
known as “kriging,” provides a flexible probabilistic framework for regression
and classification problems. A number of nonparametric regression models,
including neural networks with a single infinite hidden layer and Gaussian
weight priors, are equivalent to Gaussian processes [398]. Gaussian processes
can be used to define probability distributions over spaces of functions di-
rectly, without any need for an underlying neural architecture.

A Gaussian process is a collection of variables Y = (y(x1),y(x2), ...), with
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a joint Gaussian distribution of the form

P(Y |C, {xi}) = 1
Z

exp(−1
2
(Y − µ)TC−1(Y − µ)) (E.1)

for any sequence {xi}, where µ is the mean vector and Cij = C(xi, xj) is the
covariance of xi and xj . For simplicity, we shall assume in what follows that
µ = 0. Priors on the noise and the modeling function are combined into the
covariance matrix C . Different sensible parameterizations for C are described
below. From (E.1), the predictive distribution for the variable y associated with
a test case x is obtained by conditioning on the observed training examples.
In other words, a simple calculation shows that y has a Gaussian distribution

P(y|{y1, ..., yK}, C(xi, xj), {x1, ..., xK ,x} = 1√
2πσ

exp(−(y −y
∗)2

2σ2 ) (E.2)

with

y∗ = k(x)TC−1
K (y1, ..., yK) and σ = C(x,x)− k(x)TC−1

K k(x) (E.3)

where k(x) = (C(x1, x), ..., C(xK,x)) and CK denotes the covariance matrix
based on the K training samples.

E.1.1 Covariance Parameterization

A Gaussian process model is defined by its covariance function. The only
constraint on the covariance function C(xi, xj) is that it should yield positive
semidefinite matrices for any input sample. In the stationary case, the Bochner
theorem in harmonic analysis ([177] and given below for completeness) pro-
vides a complete characterization of such functions in terms of Fourier trans-
forms. It is well known that the sum of two positive matrices (resp. positive
definite) is positive (resp. positive definite). Therefore the covariance can be
conveniently parameterized as a sum of different positive components. Useful
components have the following forms:

• Noise variance: δijθ2
1 or, more generally, δijf(xi) for an input-dependent

noise model

• Smooth covariance: C(xi, xj) = θ2
2 exp(−∑n

u=1 ρ2
u(xiu − xju)2)

• And more generally: C(xi, xj) = θ2
2 exp(−∑n

u=1 ρ2
u|xiu − xju|r

• Periodic covariance: C(xi, xj) = θ2
3 exp(−∑n

u=1 ρ2
u sin2[π(xiu−xju)/γu]
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Notice that a small value of ρu characterizes components u that are largely
irrelevant for the output in a way closely related to the automatic relevance de-
termination framework [398]. For simplicity, we write θ to denote the vector of
hyperparameters of the model. Short of conducting lengthy Monte Carlo inte-
grations over the space of hyperparameters, a single value θ can be estimated
by minimizing the negative log-likelihood

E(θ) = 1
2

log detCK + 1
2
YTKC

−1
K YK + K2 log 2π. (E.4)

Without any specific shortcuts, this requires inverting the covariance matrix
and is likely to require O(N3) computations. Prediction or classification can
then be carried based on (E.3). A binary classification model, for instance is
readily obtained by defining a Gaussian process on a latent variable Z as above
and letting

P(yi = 1) = 1
1+ e−zi . (E.5)

More generally, when there are more than two classes, one can use normalized
exponentials instead of sigmoidal functions.

E.2 Kernel Methods and Support Vector Machines

Kernel methods and support vector machines (SVMs) are related to Gaussian
processes and can be applied to both classification and regression problems.
For simplicity, we consider here a binary classification problem characterized
by a set of labeled training example pairs of the form (xi,yi) where xi is an
input vector and yi = ±1 is the corresponding classification in one of two
classes H+ and H−. A a (0,1) formalism is equivalent but leads to more cum-
bersome notation. As an example, consider the problem of deciding whether a
given protein (resp. a given gene) belongs to a certain family, given the amino
acid sequences (resp. expression levels) of members within (positive examples)
and outside (negative examples) the family [275, 95]. In particular, the length
of xi can vary with i. The label y for a new example x is determined by a dis-
criminant function D(x; {xi,yi}), which depends on the training examples, in
the form y = sign(D(x; {xi,yi})). In a proper probabilistic setting,

y = sign(D(x; {xi,yi})) = sign(log
P(H+|x)
P(H−|x)) (E.6)

In kernel methods, the discriminant function is expanded in the form

D(x) =
∑
i
yiλiK(xi, x) =

∑
H+
λiK(xi, x)−

∑
H−
λiK(xi, x) (E.7)
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so that, up to trivial constants, log P(H+|x) = ∑
H+ λiK(xi, x) and similarly

for the negative examples. K is called the kernel function. The intuitive idea
is to base our classification of the new example on all the previous examples
weighted by two factors: a coefficient λi ≥ 0 measuring the importance of ex-
ample i, and the kernel K(xi, x) measuring how similar x is to example xi.
Therefore the expression for the discrimination depends directly on the train-
ing examples. This is different from the case of neural networks, for instance,
where the decision depends indirectly on the training examples via the trained
neural network parameters. Thus in an application of kernel methods two fun-
damental choices must be made regarding (a) the kernel K; and (b) the weights
λi. Variations on these choices lead to a spectrum of different methods, in-
cluding generalized linear models and SVMs.

E.2.1 Kernel Selection

To a first approximation, from the mathematical theory of kernels, a kernel
must be positive definite. By Mercer’s theorem of functional analysis (given
later in the section E.3.2 for completeness), K can be represented as an inner
product of the form

Kij = K(xi, xj) = φ(xi)φ(xj). (E.8)

Thus another way of looking at kernel methods is to consider that the original
x vectors are mapped to a “feature” space via the function φ(x). Note that
the feature space can have very high (even infinite) dimension and that the
vectors φ(x) have the same length even when the input vectors x do not. The
similiarity of two vectors is assessed by taking their inner product in feature
space. In fact we can compute the euclidean distance ||φ(xi) − φ(xj)||2 =
Kii − 2Kij +Kjj which also defines a pseudodistance on the original vectors.

The fundamental idea in kernel methods is to define a linear or nonlinear
decision surface in feature space rather than the original space. The feature
space does not need to be constructed explicitly since all decisions can be
made through the kernel and the training examples. In addition, as we are
about to see, the decision surface depends directly on a subset of the training
examples, the support vectors.

Notice that a dot product kernel provides a way of comparing vectors in fea-
ture space. When used directly in the discrimination function, it corresponds
to looking for linear separating hyperplanes in feature space. However more
complex decision boundaries in feature spaces (quadratic or higher order) can
easily be implemented using more complex kernels K′ derived from the inner
product kernel K, such as:

• Polynomial kernels: K′(xi, xj) = (1+K(xi, xj))m
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• Radial basis kernels: K′(xi, xj) = exp− 1
2σ2 (φ(xi) − φ(xj))t(φ(xi) −

φ(xj))

• Neural network kernels: K′(xi, xj) = tanh(µxtixj + κ)

E.2.2 Fisher Kernels

In [275] a general technique is presented for combining kernel methods with
probabilistic generative models. The basic idea is that a generative model, such
as an HMM, is typically trained from positive examples only and therefore may
not be always optimal for discrimination tasks. A discriminative model, how-
ever, can be built from a generative model using both positive and negative
examples and a kernel of the form K(xi, xj) = Ut(xi)F−1U(xj), where the vec-
tor U is the gradient of the log-likelihood of the generative model with respect
to the model parameters U(x) = ∂ log P(x|w)/∂w. This gradient describes
how a given value of w contributes to the generation of example x. For the
exponential family of distributions, the gradient forms essentially a sufficient
statistics. Notice again that U(x) has fixed length even when x has variable
length. For instance, in the case of an HMM trained on a protein family, U(x)
is the vector of derivatives that was computed in chapter 7. F is the Fisher in-
formation matrix F = E(U(x)Ut(x)) with respect to P(x|w), and this type of
kernel is called a Fisher kernel. The Fisher matrix consists of the second-order
derivatives of the log-likelihood and is therefore associated with the local cur-
vature of the corresponding manifold (see, for instance, [15]). F defines the
Riemannian metric of the underlying manifold. In particular, the local dis-
tance between two nearby models parameterized by w and w + ε is εtFε/2.
This distance also approximates the relative entropy between the two models.
In many cases, at least asymptotically with many examples, the Fisher ker-
nel can be approximated by the simpler dot product K(xi, xj) = UtxiUxj . The
Fisher kernel can also be modified using the transformations described above,
for example in the form K(xi, xj) = exp− 1

2σ2 (U(xi)−U(xj))t(U(xi)−U(xj).
It can be shown that, at least asymptotically, the Fisher kernel classifier is

never inferior to the MAP decision rule associated with the generative prob-
abilistic model. An application of Fisher kernel methods to the detection of
remote protein homologies is described in [275].

E.2.3 Weight Selection

The weights λ are typically obtained through an iterative optimization proce-
dure on an objective function (classification loss). In general, this corresponds
to a quadratic optimization problem. Often the weights can be viewed as La-
grange multipliers, or dual weights with respect to the original parameters of
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the problem (see section E.2.4 below). With large training sets, at the optimum
many of the weights are equal to 0. The only training vectors that matter in a
given decision are those with nonzero weights and these are called the support
vectors.

To see this, consider an example xi with target classification yi. Since our
decision is based on the sign of D(xi), ideally we would like yiD(xi), the
margin for example i, to be as large as possible. Because the margin can be
rescaled by rescaling the λs, it is natural to introduce additional constraints
such as 0 ≤ λi ≤ 1 for every λi. In the case where an exact separating mani-
fold exists in feature space, a reasonable criterion is to maximize the margin
in the worst case. This is also called risk minimization and corresponds to
maxλ mini yiD(xi). SVMs can be defined as a class of kernel methods based
on structural risk minimization (see section E.2.4 below). Substituting the ex-
pression for D in terms of the kernel yields maxλmini

∑
j λjyiyjKij. This can

be rewritten as maxλ mini
∑
j Aijλj , with Aij = yiyjKij and 0 ≤ λi ≤ 1. It

is clear that in each minimization procedure all weights λj associated with a
nonzero coefficient Aij will either be 0 or 1. With a large training set, many of
them will be zero for each i and this will remain true at the optimum. When
the margins are violated, as in most real-life examples, we can use a similar
strategy (an alternative also is to use slack variables as in the example given
in section E.2.5 below). For instance, we can try to maximize the average mar-
gin, the average being taken with respect to the weights λi themselves, which
are intended to reflect the relevance of each example. Thus in general we
want to maximize a quadratic expression of the form

∑
i λiyiD(xi) under a

set of linear constraints on the λi. Standard techniques exist to carry out such
optimizations. For example, a typical function used for minimization in the
literature is:

E(λi) = −
∑
i
[yiλiD(xi)+ 2λi]. (E.9)

The solution to this constrained optimization problem is unique provided that
for any finite set of examples the corresponding kernel matrix Kij is positive
definite. The solution can be found with standard iterative methods, although
the convergence can sometimes be slow. To accommodate training errors or
biases in the training set, the kernel matrix K can be replaced by K + µD,
where D is a diagonal matrix whose entries are either d+ or d− in locations
corresponding to positive and negative examples [533, 108, 141]. An example
of application of SVMs to gene expression data can be found in [95].

In summary, kernel methods and SVMs have several attractive features. As
presented, these are supervised learning methods that can leverage labeled
data. These methods can build flexible decision surfaces in high-dimensional
feature spaces. The flexibility is related to the flexibility in the choice of the
kernel function. Overfitting can be controlled through some form of margin



Kernel Methods and Support Vector Machines 393

maximization. These methods can handle inputs of variable lengths, such
as biological sequences, as well as large feature spaces. Feature spaces need
not be constructed explicitly since the decision surface is entirely defined in
terms of the kernel function and typically a sparse subset of relevant training
examples, the support vectors. Learning is typically achieved through iterative
solution of a linearly constrained quadratic optimization problem.

E.2.4 Structural Risk Minimization and VC Dimension

There are general bounds in statistical learning theory [533] that can provide
guidance in the design of learning systems in general and SVMs in particular.
Consider a family of classification functions f(x;w) indexed by a parameter
vector w. If the data points (x,y) are drawn from some joint distribution
P(x,y), then we would like to find the function with the smallest error or risk

R(w) =
∫

1
2
|y − f(x;w)|dP(x,y). (E.10)

This risk, however, is in general not known. What is known is the empirical
risk measured on the training examples:

RK(w) = 1
2K

K∑
1

|yi − f(xi;w)|. (E.11)

A fundamental bound of statistical learning theory is that for any 0 ≤ η ≤ 1,
with probability 1− η, we have

R(w) ≤ RK(w)+
√
h(log 2K/h)+ 1)− log(η/4)

K
(E.12)

where h is a non-negative integer called the Vapnik-Chervonenkis (VC) dimen-
sion [533].

The VC dimension is a property of a set of functions f(x;w). If a given set
of M points can be labeled in all possible 2M ways using functions in the set,
we say that the set of points is shattered. For instance, if f(x,w) is the set of
all lines in the planes, then every set of two points can easily be shattered, and
most set of three points (except those that are collinear) can also be shattered.
No set of four points, however, can be shattered. The VC dimension of the
set of functions f(x;w) is the maximum number of points for which at least
one instance can be shattered. Thus, for instance, the VC dimension of all the
lines in the plane is three and more generally, it can be shown that the VC
dimension of hyperplanes in the usual n-dimensional Euclidean space is n+1.
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The fundamental inequality of (E.12) embodies in some way the bias/vari-
ance or fitting/underfitting trade-off. It shows that we can control risk through
two buttons: the empirical error (how well we fit the data) and the VC dimen-
sion or capacity of the set of functions used in learning. The structural risk
minimization aims at optimizing both simultaneously by minimizing the right-
hand side of (E.12).

E.2.5 Simple Examples: Linear and Generalized Linear Model

Consider first the family of linear models of the form D(x;w) = wt
1x +w2

with w = (w1,w2), where w1 is a vector and w2 is a scalar, scaled in such a
way that mini |D(xi;w)| = 1. If R is the radius of the smallest ball containing
the training examples and if ||w1|| < A, then it can be shown that the VC
dimension h of this family of hyperplanes is bounded: h < R2A2. This bound
can be much tighter than the n+1 bound above. Thus we can use A to control
the capacity of the hyperplanes.

If a separating hyperplane exists, then the scaling above implies that
yiD(x;w) ≥ 1 for every example i. In the more general case where the con-
straints can be violated, we can introduce slack variables ξi ≥ 0 and require
yiD(x;w) ≥ 1− ξi. The support vector approach to minimize the risk bound
in (E.12) is to minimize

E(w) =wtw + µ
∑
i
ξi subject to ξi ≥ 0 and yiD(x;w) ≥ 1− ξi. (E.13)

The first term in (E.13) favors small VC dimension and the second term small
global error (empirical risk). Introducing Lagrange multipliers λi and using
the Kuhn-Tucker theorem of optimization theory, one can show that the solu-
tion has the form w = ∑i yiλixi. Intuitively, this is also clear from geometric
considerations since the vector w is orthogonal to the hyperplane. This re-
sults in the decision function D(x;w) = ∑i yiλixtix +w2 associated with a
plain dot product kernel. The coefficients λi are nonzero only for the sup-
port vectors corresponding to the cases where the slack constraints are satu-
rated: yiD(xi;w) = 1− ξi. The coefficient λi can be found by minimizing the
quadratic objective function

E(λ)= −
∑
i
λi+1

2

∑
ij
yiyjλiλjxtixj subject to 0 ≤ λi ≤ µ and

∑
i
λiyi = 0.

(E.14)
In a logistic linear model, P(y) = D(x) = σ(ywtx) where w is a vector

of parameters and σ is the logistic sigmoidal function σ(u) = 1/(1+ e−u). A
standard prior for w is a Gaussian prior with mean 0 and covariance C . Up to
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additive constants, the negative log-posterior of the training set is

E(w) = −
∑
i

logσ(yiwtxi)+ 1
2
wtC−1w. (E.15)

It is easy to check that at the optimum the solution must satisfy

w∗ = −
∑
i
yiλiCxi (E.16)

with λi = ∂ logσ(z)/∂z taken at z = yiw∗txi. Thus we obtain a solution with
the general form of (E.7) with the kernel K(xi, xj) = xtiCxj .

E.3 Theorems for Gaussian Processes and SVMs

For completeness, here we state two useful theorems underlying the theory of
kernel methods, SVMs, and Gaussian processes: Bochner’s theorem in proba-
bility and harmonic analysis and Mercer’s theorem in functional analysis.

E.3.1 Bochner’s Theorem

Bochner’s theorem provides a complete characterization of characteristic func-
tions in terms of Fourier transforms, and as a byproduct establishes the equiv-
alence between characteristic functions and covariance functions of continu-
ous stationary processes.

Consider a complex process, that is, a family of complex random variables
{Xt = Ut + iVt}, with −∞ < t < +∞. For simplicity, assume that E(Xt) = 0
and define the covariance by Cov(Xu,Xv) = E(Xu, X̄v). We will assume that
the process Xt is stationary and continuous, which means that the covariance
function is continuous and satisfies

Cov(Xs,Xs+t) = f(t). (E.17)

Thus it depends only on the distance between variables. Under these assump-
tions, Bochner’s theorem asserts that f satisfies

f(t) =
∫+∞
−∞

eiλtµ(dλ) (E.18)

where µ is a measure on the real line with total mass f(0). That is, f is positive
definite and is the Fourier transform of a finite measure. If the variables Xt are
real, then the measure µ is symmetric and

f(t) =
∫+∞
−∞

cosλtµ(dλ). (E.19)
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The measure µ is called the spectral measure of the process. Conversely, given
any finite measure µ on the real line, it can be shown that there exists a sta-
tionary process Xt with spectral measure µ. The measure µ/f(0) is a proba-
bility measure and therefore the function f in (E.18) is a characteristic func-
tion. In other words, an equivalent theorem is that a continuous function g(t)
is the characteristic function of a probability distribution if and only if it is
positive definite (i.e., it satisfies a relation similar to (E.18)) and also satisfies
the normalization g(0) = 1. Thus up to a normalisation factor, a continuous
characteristic function is equivalent to the covariance function of a stationary
process. Additional details can be found in [177].

E.3.2 Mercer’s Theorem

Mercer’s theorem provides the connection between symmetric positive defi-
nite kernels and dot products in “feature space”. Consider an integral oper-
ator κ : L2 → L2, between two L2 (square-integrable) spaces, with continuous
symmetric kernel K, so that

(κf)y =
∫
K(x,y)f(x)dx. (E.20)

Assume that K is also positive definite, i.e.∫
f(x)K(x,y)f(y)dxdy > 0 (E.21)

if f �= 0. Then there exists an orthonormal set of basis of functions ξi(x) such
that K can be expanded in the form

K(x,y) =
∞∑
i=1

λiξi(x)ξi(y) (E.22)

with λi ≥ 0, and the scalar product product (ξiξj)L2 = δij (orthonormality),
for any pair of integers i and j. From (E.20) and the orthonormality condition,
we have

(κξi)y =
∫ ∞∑
j=1

λjξj(x)ξj(y)ξi(x)dx = λiξi(y). (E.23)

In other words, κ is a compact operator with an eigenvector decomposition
with eigenvectors ξi and nonnegative eigenvalues λi. If we define the function
φ(x) by

φ(x) =
∞∑
i=1

√
λiξi(x), (E.24)
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then using the orthonormality conditions again yields

K(x,y) = φ(x)φ(y), (E.25)

which is the decomposition required in (E.8). Conversely, if we start with a
continuous embedding φ(x) of x into a feature space of dimension M, we
can then define a continuous kernel K(x,y) using (E.25). The corresponding
operator is positive definite since∫

f(x)K(x,y)f(y)dxdy =
∫
f(x)(φ(x)φ(y))f(y)dxdy =

M∑
i=1

∫
f(x)φi(x)φi(y)f(y)dxdy =

M∑
i=1

(
∫
f(x)φi(x)dx)2 ≥ 0.

(E.26)
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Appendix F

Symbols and Abbreviations

Probabilities

• π : Unscaled degree of confidence or belief

• P(P ,Q,R . . .): Probability (actual probability distributions)

• E (EQ): Expectation (expectation with respect to Q)

• Var: Variance

• Cov: Covariance

• Xi, Yi (xi,yi): Propositions or random variables (xi actual value of Xi)

• X̄: Complement or negation of X

• X⊥Y (X⊥Y |Z): X and Y are independent (independent conditionally on
Z)

• P(x1, . . . , xn): Probability that X1 = x1, . . . , Xn = xn. When the context is
clear, this is also written as P(X1, . . . , Xn). Likewise, for a specific density
Q, we write Q(x1, . . . , xn) or Q(X1, . . . , Xn)

• P(X|Y)(E(X|Y)): Conditional probability (conditional expectation)

• N (µ,σ),N (µ,C),N (µ,σ2),N (x;µ,σ2): Normal (or Gaussian) density
with mean µ and variance σ2, or covariance matrix C

• Γ(w|α,λ): Gamma density with parameters α and λ

• DαQ: Dirichlet distribution with parameters α and Q

399
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• t(x;ν,m,σ2), t(ν,m,σ2): Student distribution with ν degrees of free-
dom, location m, and scale σ

• I(x;ν,σ2), I(ν,σ2): scaled inverse gamma distribution with ν degrees
of freedom and scale σ

Functions

• E : Energy, error, negative log-likelihood or log-posterior (depending on
context)

• ET , EG, EC : Training error, generalization error, classification error

• EP : Parsimony error

• F : Free energy

• L: Lagrangian

• D: Decision function

• R: Risk function

• RK : Empirical risk function

• H (P), H (X): Entropy of the distribution P , or the random variable
X/differential entropy in continuous case

• H (P ,Q), H (X, Y ): Relative entropy between the distributions P and Q
or between the random variables X and Y

• I(P ,Q), I(X, Y ): Mutual information between the distributions P and Q,
or the random variables X and Y

• Z: Partition function or normalizing factor (sometimes also C)

• C : Constant or normalizing factor

• δ(x,y): Kronecker function equal to 1 if x = y and 0 otherwise

• f , f ′: Generic function and derivative of f

• Γ(x): Gamma function

• B(α,Q): Beta function (appendix D)
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• We also use convex (∪) to denote upward convexity (positive second
derivative), and convex (∩) to denote downward convexity (negative sec-
ond derivative), rather than the more confusing “convex” and “concave”
expressions

Models, Alphabets, and Sequences

• M (M =M(w)): Model (model with parameters w)

• D: Data

• I : Background information

• H: Hidden or latent variables or causes

• S = {s1 , s2, . . . , s|S|}: Set of states of a system

• s: Generic state

• A (X): Alphabet (generic letter)

• A = {A,C,G,T}: DNA alphabet

• A = {A,C,G,U}: RNA alphabet

• A = {A,C,D, . . .}: Amino acid alphabet

• A∗: Set of finite strings over A

• O = (X1 . . .Xt . . .): Generic sequence (“O” stands for “observation” or “or-
dered”)

• ∅: Empty sequence

• O1, . . . ,OK : Set of training sequences

• Ojk: jth letter of kth sequence

Graphs and Sets

• G = (V , E): Undirected graph with vertex set V and edge set E

• G = (V , �E): Directed graph with vertex set V and edge set E

• T : Tree

• N(i): Neighbors of vertex i

Symbols and Abbreviations
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• N+(i): Children of vertex i in a directed graph

• N−(i): Parents of vertex i in a directed graph

• C+(i): The future, or descendants, of vertex i in a directed graph

• C−(i): The past, or ancestors, of vertex i in a directed graph

• N(I): Neighbors or boundary of a set I of vertices

• P(G): Family of probability distributions satisfying the conditional inde-
pendence assumptions described by G

• GC : Clique graph of G

• GM : Moral graph of G

• ∪, ∩, :̄ Union, intersection, complement of sets

• ∅: Empty set

Dimensions

• |A|: Number of alphabet symbols

• |S|: Number of states

• |H|: Number of hidden units in HMM/NN hybrid models

• N: Length of sequences (average length)

• K: Number of sequences or examples (e.g., in a training set)

• T : Time horizon (sometimes also temperature when no confusion is pos-
sible)

General Parameters

• w : Generic vector of parameters

• tji: Transition probability from i to j, for instance in a Markov chain

• t (wt
ij , X

t): Time index, in algorithmic iterations or in sequences

• +, − (w+
ij ): Relative time index, in algorithmic iterations

• ∗ (w∗
ij ): Optimal solutions
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• η: Learning rate

Neural Networks

• wij : Connection weight from unit j to unit i

• wi, λi: Bias of unit i, gain of unit i

• Dj = (dj, tj): Training example; dj is the input vector and tj is the cor-
responding target ouput vector

• yi = fi(xi): Input-output relation for unit i: xi is the total input into the
unit, fi is the transfer function, and yi is the output

• y(di): Output activity of NN with input vector di

• yj(di): Activity of the jth ouput unit of NN with input vector di

• tj(di): Target value for the jth ouput unit of NN with input vector di

Hidden Markov Models

• m,d, i, h: Main, delete, insert, and anchor states. Most of the time, i is
just an index

• start, end: Start state and end state of an HMM (also denoted S and E in
figures)

• E: Set of emitting states of a model

• D: Set of delete (silent) states of a model

• L: In appendix D only, L denotes the set of states in the loop of an HMM
loop architecture

• tij (wij ): Transition probability from state j to state i (normalized expo-
nential representation)

• eiX (wiX): Emission probability for letter X from state i (normalized expo-
nential representation)

• tDij : Silent transition probability from state j to state i

• π : Path variables

• n(i,X, π,O): Number of times the letter X is produced from state i along
a path π for a sequence O in a given HMM

Symbols and Abbreviations
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• αi(t): Forward variables

• αLi (t): Forward variables in the HMM loop architecture

• βi(t): Backward variables

• α̂i(t): Scaled forward variables

• β̂i(t): Scaled backward variables

• γi(t): Probability of being in state i at time t in an HMM for a given
observation sequence

• γji(t): Probability of using the i to j transition at time t in an HMM for a
given observation sequence

• δi(t): Variables used in the recursion of the Viterbi algorithms

• κ: Probability of going around an HMM loop silently

• b(X,Y,Z): Bendability of triplet XYZ

• B(i,O): Bendability of sequence O at position i

• B(i): Bendability of a family of sequences at position i

• W : Length of averaging window in bendability calculations

Bidirectional Architectures

• W : Total number of parameters

• Ot : Output probability vector

• Bt : Backward context vector

• Ft : Forward context vector

• It : Input vector

• η(.): Output function

• β(.): Backward transition function

• φ(.): Forward transition function

• n: Typical number of states in the chains

• q: Shift operator
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Grammars

• L: Language

• G: Grammar

• L(G): Language generated by grammar G

• R: Production rules of a grammar

• V : Alphabet of variables

• s = start: Start variable

• α → β: Grammar production rule: α “produces” or “expands to” β

• πi(t): Derivation variable in grammars

• n(β,u,π,O): Number of times the rule u → β is used in the derivation
π of a sequence O in a given grammar

• Pα→β (wα→β): Probability of the production rule α → β in a stochastic
grammar (normalized exponential representation)

Phylogenetic Trees

• r : Root node

• Xi: Letter assigned to vertex i

• dji: Time distance from node i to node j

• pXjXi (dji): Probability that Xi is substituted by Xj over a time dji

• χi(t): Random variable associated with letter at position i in a sequence
at time t

• piYX(t): Probability that X is substituted by Y over a time t at position i in
a sequence

• P(t) = (pYX(t)): Matrix of substitution probabilities for time t

• Q = (qYX): Derivative matrix of P at time 0 (Q = P ′(0))
• p = (pX): Stationary distribution

• χi: Random variable associated with letter at node i in a tree

Symbols and Abbreviations
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• I : Set of internal nodes of a tree

• O+(i): Evidence contained in subtree rooted at note i

Microarrays

• n (nc , nt): Number of expression measurements of a gene (in the control
and treatment cases)

• xc1 , . . . , xcnc (xt1, . . . , xtnt ): Expression measurements of a gene in the con-
trol case (and treatment case)

• m (mc , mt): Empirical means of measurements of a gene (in the control
and treatment cases)

• s2 (s2
c , s2

t ): Empirical variances of measurements of a gene (in the control
and treatment cases)

• d1, . . . , dN : N data points to be clustered

• K: Number of clusters

Kernel Methods and Support Vector Machines

• w: Vector of model parameters

• λi: Weights

• ξi: Slack variables

• Kij = K(xi, xj): Kernel function

• F : Fisher information matrix

• φ(x): Feature vector

• U(x): Gradient vector of the log-likelihood with respect to model param-
eters

• h: VC dimension

Abbreviations

• CFG: Context-free grammar

• CSG: Context-sensitive grammar
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• BIOHMM: Bidirectional IOHMM

• BRNN: Bidirectional RNN

• EM: Expectation maximization

• HMM: Hidden Markov model

• IOHMM: Input-output HMM

• LMS: Least mean square

• MAP: Maximum a posteriori

• MaxEnt: Maximum entropy

• MCMC: Markov chain Monte Carlo

• ML: Maximum likelihood

• MLP: Multilayer perceptron

• MP: Mean posterior

• NN: Neural network

• RNN: Recursive NN

• RG: Regular grammar

• REG: Recursively enumerable grammar

• SG: Stochastic grammar

• SCFG: Stochastic context-free grammar

• SS: Secondary structure

• SVM: Support vector machine

• VC: Vapnik-Chervonenkis

Symbols and Abbreviations
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